PREPARAÇÃO E INSTALAÇÃO DA BALANÇA DE EMPUXO PARA ENSAIO DE PROPULSORES DE SATÉLITES NO BANCO DE TESTES COM SIMULAÇÃO DE ALTITUDE – OP 700

Carlos Eduardo Rolfsen Salles
Henrique César Sampaio
Jefferson Luiz Nogueira

Publicação Interna – sua reprodução ao público externo está sujeita à autorização da chefia.

INPE
São José dos Campos
2004
RESUMO

Este documento tem como principal objetivo estabelecer um procedimento padrão para a preparação e instalação da balança de empuxo do Banco de Testes com Simulação de Altitudes do Laboratório Associado de Combustão e Propulsão (BTSA/LCP/CES/INPE), para testes de propulsores de satélites a bipropelente.
ABSTRACT

The main objective of this document is to establish a standard procedure for the preparation and installation of the thrust balance for testing bipropellant satellite thrusters in the Test Bench with Altitude Simulation at the Combustion and Propulsion Associate Laboratory (BTSA/LCP/CES/INPE), within 200N range. All needed actions are shown in the form of operational procedures.
# LISTA DE SIGLAS E/OU ABREVIATURAS

1. - OBJETIVO E CAMPO DE APLICAÇÃO ..............................................  6
2. - CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA .................  6
3. - DESCRIÇÃO DO BANCO DE TESTES COM SIMULAÇÃO DE
   ALTITUDE (BTSA) ...............................................................................  7
4. - DESCRIÇÃO DAS AÇÕES À EFETUAR............................................  14
   4.1 - Preparação e instalação da balança – OP 701 ..............................  14
   4.2. - Regulação mecânica da balança – OP 702 ...............................  16
   4.3. - Aferição da balança – OP 703 ..................................................  17

REFERÊNCIAS BIBLIOGRÁFICAS ...........................................................  22
LISTA DE FIGURAS

3.1: Vista geral do BTSA ................................................................. 7
3.2: Vista geral do BTSA ................................................................. 8
3.3: Câmara de vácuo ................................................................. 8
3.4: Caldeira e super aquecedor ..................................................... 9
3.5: Bombas de anel líquido ........................................................ 9
3.6: Condensador ................................................................. 10
3.7: Compressores de amônia ..................................................... 11
3.8: Separador ................................................................. 12
3.9: Sistema de refrigeração ..................................................... 13
3.10: Armários elétricos ........................................................ 13
LISTA DE SIGLAS E/OU ABREVIATURAS

amb : ambiente
APU : *Auxiliary Pumping Unity* (Unidade Auxiliar de Bombeamento)
atm : atmosférico
CGE : *Checklist* Geral de Ensaio
CGM : Cronologia Geral do Motor
CR : *Control Room* (Sala de Controle)
D −1 : Dia anterior ao ensaio do motor
D 0 : Dia do ensaio do motor
D +1 : Dia posterior ao ensaio do motor
DT : Diretor de Tiro
ENG : Engenheiro
EPI : Equipamento de Proteção Individual
QUIM : Químico
MES : Medidas
MPU : *Main Pumping Unity* (Unidade Principal de Bombeamento)
Obs. : Observações
OP : *Operacional Procedure* (Procedimento Operacional)
RESP : Responsável
1. OBJETIVO E CAMPO DE APLICAÇÃO

Este documento tem como principal objetivo estabelecer um procedimento padrão de preparação e instalação da balança de empuxo para ensaio de propulsores bipropelentes líquidos para aplicações espaciais no Banco de Testes com Simulação de Altitude do Laboratório Associado de Combustão e Propulsão do Instituto Nacional de Pesquisas Espaciais no Centro Espacial de Cachoeira Paulista (BTSA/LCP/CES/INPE). O BTSA pode ser utilizado para testes de qualificação de sistemas propulsivos para aplicações espaciais, por exemplo, plataformas espaciais, veículos espaciais, controle de altitude e órbita de satélites, etc.

2. INTRODUÇÃO

O ensaio de propulsores bipropelentes líquidos em câmaras de vácuo exige a elaboração de um checklist para a preparação do Banco de Testes para os ensaios.

Inicialmente, o cliente, proprietário do motor, elabora um plano de testes para o propulsor. Em geral, estes testes envolvem operação no modo pulsado ou contínuo e em várias condições de funcionamento. Então, é feita uma reunião entre o Diretor de Tiro (DT) e equipe (do Banco de Testes) com o cliente, na qual são definidos todos os parâmetros que deverão ser controlados e adquiridos durante os ensaios. Além da aquisição das medidas de temperatura, empuxo, pressão de câmara de combustão, vazão dos propelentes, nível de vácuo da câmara durante o teste, etc., parâmetros de vigilância devem ser definidos para maior segurança.

A partir daí, dois procedimentos simultâneos são iniciados pela equipe do BTSA, a Cronologia Geral do Banco (CGB) e a Cronologia Geral do Motor (CGM) que envolvem a descrição das operações ligadas ao BTSA e ao motor necessárias antes e depois de um teste de um motor bilíquido. Estas cronologias utilizam outros procedimentos de operação que serão distribuídos.
pelo Diretor de Tiro para os membros da equipe de especialistas do BTSA, como seguem:

- Procedimentos para preparação do grupo de vácuo – OP 300;
- Procedimentos para sistema de propelentes – OP 400;
- Procedimentos para sistema de medidas e tratamento de dados – OP 500;
- Procedimentos para sistema de segurança – OP 600;
- Procedimentos para preparação e instalação da balança de empuxo – OP 700.

3. DESCRIÇÃO DO BANCO DE TESTES COM SIMULAÇÃO DE ALTITUDE (BTSA)

O BTSA foi projetado e construído por uma parceria entre o INPE e a empresa francesa SEP (Société Européene de Propulsion), hoje SNECMA Moteurs. As figuras 3.1 e 3.2 apresentam uma perspectiva do prédio de ensaios e dos pesquisadores e equipe técnica.

FIGURA 3.1 - Vista geral do BTSA
FIGURA 3.2 - Vista geral do BTSA.

A altitude é simulada numa câmara de vácuo de 8,5 m³ de volume ligado ao grupo principal de vácuo através de um canal equipado com uma válvula pneumática tipo guilhotina, conforme mostra a Figura 3.3.

FIGURA 3.3 - Câmara de vácuo.
Ejetores alimentados por vapor d’água super aquecido e bombas de anel líquido são utilizados na criação do vácuo para a simulação da altitude. O vapor é gerado por um conjunto de caldeira e super aquecedor (conforme mostra a Figura 3.4). As bombas de anel líquido são mostradas na Figura 3.5.

FIGURA 3.4 - Caldeira e super aquecedor.

FIGURA 3.5 - Bombas de anel líquido.
Os produtos de combustão mais vapor que se expandiu são descarregados num condensador tipo chuveiro, conforme Figura 3.6, tipo chuveiro que utiliza 75 m³/h de água à 11°C.

Para o trocador de calor das bombas de anel líquido são necessários 30 m³/h de água à 9°C. Portanto, para a produção de água fria o BTSA possui

FIGURA 3.6 – Condensador.
dois compressores de amônia (chillers), capazes de produzir 105 m³/h de água fria à 8°C para alimentar o sistema. Conforme mostra a Figura 3.7:

FIGURA 3.7 - Compressores de amônia.

Após a condensação dos vapores no condensador mais a água utilizada no processo, o fluido vai para o separador, ilustrado na Figura 3.8.
Toda a água é armazenada para retornar ao sistema de refrigeração, mostrado na Figura 3.9.
Todos os subsistemas associados ao grupo principal de vácuo possuem armários elétricos que podem operar em modo local ou remoto, Figura 3.10.
4. DESCRIÇÃO DAS AÇÕES A EFETUAR

4.1 Preparação e instalação da balança – OP 701.

<table>
<thead>
<tr>
<th>N°</th>
<th>RESP</th>
<th>Ações a serem efetuadas</th>
<th>Operação efetuada</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td></td>
<td>Desmontagem vertical / Nova montagem horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dentro do caixão</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Controlar que a balança esta aferrolhada.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Desmontar o suporte da roldana de extremidade rep.01 fixada na esquadria rep.04.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Retirar o suporte da roldana vertical rep.08.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Retirar o conjunto estribo rep.14 e sensor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Desparafusar as 4 porcas de fixação da esquadria principal rep.04 com os suportes da esquadria rep.05 e deixar os parafusos em local.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Segurar o conjunto balança e esquadria principal e tirar os 4 parafusos de fixação o nível dos suportes (de trás antes da frente) e depositar o conjunto.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Tirar as 4 cavilhas de fixação superior dos 2 alongamentos rep.06 e tirar para fora o conjunto alongamentos e suportes da frente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fora do caixão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Retirar o esticador rep.03 e arrumá-lo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fixar o soco da roldana rep.02 no suporte rep.01.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fixar o conjunto suporte da roldana e soco no suporte de esquadria da frente rep.05.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Controlar que as 2 colunatas são fixadas no quadro horizontal rep.07 e por eles em local, caso necessário.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Colocar no local o conjunto suporte de esquadria e alongamentos (rep.05 e 06) no quadro horizontal rep.07 e fixar com as 4 cavilhas dos alongamentos e os 2 parafusos das colunatas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Colocar no local o conjunto balança e esquadria principal no quadro, a parte de cima da esquadria assente sobre a travessa horizontal do quadro e a parte de baixo encaixada entre as aurículas do suporte de esquadria rep.05.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Por em local os 2 parafusos da parte do baixo da esquadria pois os 2 parafusos da parte de cima da esquadria e os apertar, depois por em local as 2 porcas da parte de baixo da esquadria e as apertar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Montar o conjunto estribo rep.14 e sensor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fazer a regulação da balança.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Por em local o conjunto balança e quadro horizontal dentro do caixão.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Dentro do caixão**

FIM
4.2 Regulação mecânica da balança – OP 702.

<table>
<thead>
<tr>
<th>OP 702</th>
<th>Regulação mecânica da balança</th>
<th>Operação efetuada</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planos usados: Papin n°97100 índice A e Procédure Papin n° INPE-OP-1240-60-124-01-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>Centralização da balança na esquadria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Controlar que a balança está aferrolhada.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Verificar que o espaço em vertical entre a esquadria e o pé do estribo está superior aos 10mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Caso o espaço não esteja suficiente efetuar as operações 4 até 7, caso contrário efetuar diretamente a operação 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Desapertar ligeiramente as porcas de fixação dos suportes em U rep.09 entre a balança e a esquadria principal rep.04.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Deslizar a balança no eixo do motor de maneira a ficar com um espaço de 11 mm entre a platina de fixação do estribo rep.17 e a esquadria principal rep.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Deslizar a balança perpendicularmente ao eixo do motor de maneira a centrar o estribo respeito a esquadria rep.04,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Apertar as porcas de fixação dos suportes em U rep.09.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Verificar a horizontalidade e a verticalidade (conforme utilização) da placa rep.32,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Aferição da balança – OP 703.

<table>
<thead>
<tr>
<th>OP 703</th>
<th>Aferição da balança</th>
<th>Operação efetuada</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Ações a serem efetuadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pedir o Diretor de Tiro o acesso à câmara de vácuo para fazer a aferição</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Liberar a balança de empuxo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Na janela Scopix, clicar no ícone &quot;Ferramenta&quot;.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Seleccionar o nome do sistema de aquisição atual &quot;SEP01&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Clicar sobre WIRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Seleccionar o canal de medida correspondente ao empuxo &quot;P006&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Clicar sobre SETTING e depois sobre DELETE para selecionar o sensor &quot;capteur defaut&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Clicar sobre O.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Clicar sobre CLOSE e sobre CLOSE novamente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Na janela Scopix, clicar no ícone &quot;Arquivos&quot;.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Seleccionar o nome da campanha atual &quot;Rec_banc&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Clicar sobre OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Na janela &quot;Tests campaign setting&quot; selecionar o ensaio E_VISU17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Clicar em EXECUTE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Na janela &quot;Test execute&quot; clicar sobre CHECKING ZERO para atualizar a tela de visualização tempo real.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 16 | Anotar o valor indicado na tela para a medida do empuxo "F"
Este valor indica a tensão gerada pelo sensor de empuxo expressa em mV
Nota: a unidade anotada sobre a tela é Volts, mas a medida tem que ser entendida como mili-Volts |
<p>| 17 | Verificar que o valor é pelo menos igual a +1,0 mV, caso contrário girar o parafuso de regulagem da mola de pré-carga da balança para obter o valor de +1,0 mV |
| 18 | Pegar nos pesos de regulagem e anotar na tabela 1 a massa de cada peso |
| 19 | Pegar o cesto e anotar a sua massa na tabela 1 |
| 20 | Anotar na tabela 2 o valor de empuxo F mostrado na tela quando balança esta vazia. isto corresponde ao Zero de balança |
| 21 | Conectar o cesto ao sensor da balança |
| 22 | Anotar na tabela 2 a tensão gerada pelo sensor nestas condições (ver na tela) |
| 23 | Carregar o primeiro peso no cesto |
| 24 | Anotar na tabela 2 a tensão gerada pelo sensor nestas condições (ver na tela) |
| 25 | Prosseguir da mesma forma na ordem indicada pela tabela 2 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Tirar os pesos de dentro do cesto e retirar o cesto da balança</td>
</tr>
<tr>
<td>27</td>
<td>Calcular a força correspondente as massas aplicadas com $F = m \times g$ ($g = 9,806 \text{ m/s}^2$ no Brasil)</td>
</tr>
<tr>
<td>28</td>
<td>Efetuar a modelização do sensor com os pares de pontos em mV e Newtons e anotar os coeficientes:</td>
</tr>
<tr>
<td></td>
<td>$a_0 =$</td>
</tr>
<tr>
<td></td>
<td>$a_1 =$</td>
</tr>
<tr>
<td>29</td>
<td>Na janela &quot;Test Execute&quot; clicar sobre STOP CHECKING e depois sobre CLOSE.</td>
</tr>
<tr>
<td>30</td>
<td>Na janela Scopix, clicar no ícone &quot;Ferramenta&quot;.</td>
</tr>
<tr>
<td>31</td>
<td>Selecionar o sensor FN711 na lista dos sensores</td>
</tr>
<tr>
<td>32</td>
<td>Clicar sobre SETTING</td>
</tr>
<tr>
<td>33</td>
<td>Digitar os novos coeficientes do sensor $a_0$ e $a_1$</td>
</tr>
<tr>
<td>34</td>
<td>Escrever a data da aferição da na zona dos comentários e clicar sobre O.K.</td>
</tr>
<tr>
<td>35</td>
<td>Selecionar o nome do sistema de aquisição atual &quot;SEP01&quot;</td>
</tr>
<tr>
<td>36</td>
<td>Clicar sobre WIRE</td>
</tr>
<tr>
<td>37</td>
<td>Selecionar o canal de medida correspondente ao empuxo &quot;P006&quot;</td>
</tr>
<tr>
<td>38</td>
<td>Clicar sobre SETTING</td>
</tr>
<tr>
<td>39</td>
<td>Selecionar o sensor FN711 na lista dos sensores e depois clicar sobre CHOICE</td>
</tr>
<tr>
<td>40</td>
<td>Verificar que o nome escrito em baixo é bem FN711</td>
</tr>
<tr>
<td>41</td>
<td>Clicar sobre O.K.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>42</td>
<td>Clicar sobre CLOSE e sobre CLOSE novamente</td>
</tr>
<tr>
<td>43</td>
<td>Na janela Scopix, clicar no ícone &quot;Arquivos&quot;.</td>
</tr>
<tr>
<td>44</td>
<td>Selecionar o nome da campanha atual &quot;Rec_banc&quot;</td>
</tr>
<tr>
<td>45</td>
<td>Clicar sobre OPEN</td>
</tr>
<tr>
<td>46</td>
<td>Na janela &quot;Tests campaign setting&quot; selecionar o ensaio E_VISU17</td>
</tr>
<tr>
<td>47</td>
<td>Clicar em EXECUTE.</td>
</tr>
<tr>
<td>48</td>
<td>Na janela &quot;Test execute&quot; clicar sobre CHECKING ZERO para atualizar a tela de visualização tempo real.</td>
</tr>
<tr>
<td>49</td>
<td>Verificar que o valor do empuxo escrito na tela esta perto do 0 à aproximadamente + / - 2 Newton</td>
</tr>
<tr>
<td>50</td>
<td>Conectar novamente o cesto na balança</td>
</tr>
<tr>
<td>51</td>
<td>Verificar que o valor do empuxo mostrado na tela é correto</td>
</tr>
<tr>
<td>52</td>
<td>Carregar o primeiro peso no cesto</td>
</tr>
<tr>
<td>53</td>
<td>Verificar que o valor do empuxo mostrado na tela é correto</td>
</tr>
<tr>
<td>54</td>
<td>Prosseguir da mesma forma na ordem indicada pela tabela 2</td>
</tr>
<tr>
<td>55</td>
<td>Tirar os pesos de dentro do cesto e despegar o cesto da balança</td>
</tr>
<tr>
<td>56</td>
<td>Verificar que o valor do empuxo escrito na tela esta perto do 0 à aproximadamente + / - 2 Newton</td>
</tr>
<tr>
<td>57</td>
<td>Travar novamente a balança se necessário</td>
</tr>
<tr>
<td>58</td>
<td>Arrumar o cesto e os pesos</td>
</tr>
<tr>
<td>59</td>
<td>Avisar o Diretor de Tiro que o aferição da balança está terminado</td>
</tr>
</tbody>
</table>

FIM
REFERÊNCIAS BIBLIOGRÁFICAS
