The Monsoon Systems of the Americas

Carolina Vera and Wayne Higgins
with
Motivation

Objectives

1) to understand the key components of the American monsoon systems and their variability;

2) to determine the role of these systems in the global water cycle;

3) to improve observational data sets; and

4) to improve simulation and monthly-to-seasonal prediction of the monsoons and regional water resources.
Organization

• Basic Features
• Diurnal modulation and mesoscale variability
• Synoptic variability
• Intraseasonal variability
• Interannual variability
• Variability in decadal (and longer) timescales
• Land surface variations in the American Monsoon systems
• Monsoon Hydrology
• Future Challenges
Basic Features

Mean monthly precipitation averaged over each spatial domain

- SAMS
- INDIA
- NAMS

Months

NAMS SAMS Sahel PNW India

Mean Monthly Precipitation, mm/month

1 2 3 4 5 6 7 8 9 10 11 12
Monsoon Onset

North American Monsoon System (NAMS)

South American Monsoon System (SAMS)
(Courtesy V. Kousky)
Monsoon mature phase

Climatological seasonal mean precipitation (shaded), 200-hPa streamlines (black contours) & vertically integrated moisture fluxes (arrows)
Diurnal cycle

NAMS

Average Fractional Coverage (%) Cold Cloud (<235K)
July 2001
14:30Z

21Z ~ 14 LST

SAMS

Average Fractional Coverage (%) Cold Cloud (<235K)
January 2001
14:30Z

21Z ~ 18 LST
Diurnal cycle

Wet-day hourly rain rates for various elevation bands in the SMO from the NAME Event Raingauge Network (NERN)

Time of Maximum hourly precipitation frequency from NERN

Gochis et al. 2003

Jul-Aug 02-03 Time of Max. Hourly Precipitation Frequency
Mesoscale Variability

Subtropical South America has the largest fractional contribution of PFs with MCSs to rainfall of anywhere on earth between 36 N and 36 S (Courtesy Nesbitt & Zipser)

MCS mature stage time occurrence frequency during SALLJEX. Bars in green represent the period November 15 to December 31, in black January 1 to February 15 (Zipser et al. 2004)
South American Low-Level Jet Experiment

PIBALS

Enhanced precipitation gauge network

NOAA/P-3 Missions

Radiosondes

SALLJEX

WCIP CLIVAR / VAMOS-GEWEX Field Campaign
The South American Low-Level Jet

LLJ Composites NDJF,
(Marengo et al. 2004)

SALLJ spatial structure
depicted by NOAA/P-3
missions in SALLJEX

SALLJ diurnal cycle at 700 asl depicted by SALLJEX
observations (Nicolini et al. 2004)
VAMOS Contribution to GCOS Action Plan for South America

Project Brief: Enhancement of the GUAN network in Central South America
The NAME 2004 Field Campaign (ongoing) is an unprecedented opportunity to gather extensive atmospheric, oceanic, and land-surface observations in the core region of the North American Monsoon over NW Mexico, SW United States, and adjacent oceanic areas.

NAME HYPOTHESIS:
The NAMS provides a physical basis for determining the degree of predictability of warm season precipitation over the region.
FUTURE CHALLENGES: LOCAL SCALES

(1) What are the relationships between local low-level circulation features (e.g. the low-level jets; mountain-valley circulations; land and sea breezes) and the diurnal cycle of moisture and convection?

(2) What are the dominant sources of precipitable moisture for monsoon precipitation?

(3) What are the relative roles of local variations in sea surface temperature and land-surface parameters (topography, soil moisture and vegetation cover) in modulating precipitation?
Intraseasonal Variability

Typical circulation features of the NAMS accompany wet and dry surges keyed to Yuma, AZ. (Higgins et al. 2004)

Typical circulation features of the SAMS accompany wet and dry conditions over Southeastern South America (e.g. Diaz and Aceituno 2003)
Intraseasonal Variability (MJO)

Composite evolution of 200-hPa velocity potential anomalies associated with MJO events and points of origin of tropical disturbances that developed into hurricanes or typhoons.
FUTURE CHALLENGES: REGIONAL SCALES

(1) What is the nature of the relationship between the MJO and monsoon precipitation?

(2) What are the relationships between the MJO and extreme weather events (such as droughts and floods) in the Americas?

(3) What are the relative influences of the MJO and ENSO on monsoon precipitation?
Interannual Variability

Role of land surface conditions

Correlation coefficients between CPTEC model anomalies and observed anomalies of rainfall (Marengo et al. 2003)

Aerosol plume produced by biomass burning at the end of the dry season and transported to the south (Freitas et al. 2004)

Role of SST anomalies

(Doyle & Barros 2002)

Role of Large-scale circulation

(Silvestri & Vera 2003)

Precipitation

PSI(200 hPa)
Interannual Variability

AREA MEAN PRECIPITATION OVER ARIZONA AND NEW MEXICO FOR WET, DRY AND ALL MONSOONS (1963-2000)

- The Winter preceding wet (dry) summer monsoons is on the dry (wet) side in this region.
- There is no signal in the spring suggesting that this “memory” is communicated via remote SST’s or through the land surface. Unfortunately, the correlation with ENSO is not significant in this region.
Variability on decadal (and longer) timescales

JFM precipitation trends (Liebmann et al. 2004)

Normalized annual departures of SALLJ-event annual counts

Precipitation

River stream flow

SW Atlantic SSTs
FUTURE CHALLENGES:
CONTINENTAL SCALES

(1) How is the evolution of monsoonal precipitation related to the seasonal evolution of the oceanic and continental boundary conditions?

(2) What are the relationships between interannual variations in the boundary conditions, the atmospheric circulation and the continental hydrologic regime?

(3) What is the correlation between the anomaly-sustaining atmospheric circulation and the land and ocean surface boundary conditions that characterize precipitation and temperature anomalies during the summer?
MESA and NAME

• Roadmaps with joint modeling and data assimilation activities are being planned. Emphasis is on modeling activities that include:

 • Baseline seasonal simulations that correspond to major field campaigns (SALLJEX, NAME04, PLATIN)

 • Multi-year simulations focused on key physical processes (e.g. the diurnal cycle of convection).

http://www.clivar.org/organization/vamos
Thanks to the VAMOS community from the tremendous scientific contributions to our understanding of the American Monsoon Systems!

A very special acknowledgment to present and former Chairs and members of VAMOS Panel and SWGs, to VAMOS Project Office, ICPO and funding agencies