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INTRODUCTION. 
The biggest drawback in long-term 
meteorological time series analysis is that 
recorded data available must be gap-filled 
and quality controlled to provide a reliable 
continuous homogeneous reference series 
(where divergences are caused only by 
variations in weather and climate). A 
common problem in numerical climate 
characterization is the spatiotemporal 
processing (integration or interpolation) of 
data from different types and different 
origins or accuracy (the space-time 
change of support problem). 
 
Data reconstruction is a methodology 
developed by climate scientists and 
meteorologists to remove inconsistencies 
in a time series due to factors unrelated 
weather, such as station location change, 
station environment change or change in 
instrumentation. A reconstructed time 
series behaves as if the station observed 
weather throughout its history using its 
current configuration. Objective: 
Availability, reliability and homogeneity of 
the historical series of meteorological data. 
The development of a continuous and 
complete daily dataset are useful in a 
variety of meteorological and hydrological 
research applications. 
 
Time series is a special case of symbolic 
regression and can be done using the 
framework of mathematical modelling by 
an artificial intelligence network. The 
Artificial Neural Network (ANN) explores 
the dependence of meteorological 
attributes as a function of space & time 
on inputs to the computer simulations. 
The use of ANN has been recognized 
recently as a promising way of making 

predictions on time series, detecting 
irregular behaviour.  
 
The Stochastic Artificial Neural Network 
approach using Empirical Bayesian 
Updating seems to be an important tool 
for the propagation of the related weather 
information to provide practical 
geostatistics solution of uncertainties 
associated with the interpolation, 
capturing the spatiotemporal structure of 
the data. The basic idea is to import the 
entire posterior distribution from other 
locations allowing prediction of 
unsampled weather parameters using 
spatial related sampled information. The 
temporal dependence of model parameters 
is evaluated in a Bayesian framework. A 
model is used to predict the process of 
interest Q at the time t. This Multivariate 
Stochastic procedure uses the available 
related weather data sets and climate 
proxies (monitoring and assembling 
network sites).  
 
The Bayesian solution is the posterior 
predictive function. In practice, the 
posterior predictive distribution is 
obtaining by an updating of the a priori 
distribution of the Q(s,t) at local s. The 
spatiotemporal dependence can be 
explored by examining the distribution of 
nearest-neighbour distances. To validate 
the work-algorithm, the diagnostic of 
homogenised minimum-maximum 
temperature and  total daily precipitation 
was accomplished.  
 
The spatial distribution of temperatures 
and precipitation are summarised by the 
subjective descriptive four-moment 
measures: Mean, Variance, Skewness and 
Kurtosis, giving support to spatial pattern 
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recognition. A number of homogeneity 
tests with kinds to detect non 
homogeneities were employed (methods 
currently used Chow & Pettitt, SNHT 
Alexandersson, Range Buishand, Von 
Neumann ratio and Craddock tests) and 
the effect of natural variability is 
established taking into account 
ensembles of consecutive years. The 
significance of the adjustments was tested 
using the Robust Modified Wilcoxon Rank 
Sum Test. The Customised Kendall t Test 
is used as a non-parametric method to 
test the significance of trends. As 
expected, this robust reconstruction 
method has good performance; since more 
information is introduced in the decision-
making system (the conclusion highlights 
the use of climate proxies response as 
potential weather predictor).  
 
PROJECT APPROACH. 
The biggest drawback in long-term 
meteorological time series analysis is that 
recorded data available must be gap-filled 
and quality controlled to provide a reliable 
continuous homogeneous reference series 
(where divergences are caused only by 
variations in weather and climate). Hence, 
spatiotemporal integration is required! 
 
This work consists on the reconstruction 
of long-term weather time series for a 
number of Brazilian localities, 
consubstantiating the spatial consistency, 
apparent cycles and respective trends. We 
capture the intrinsic dynamics of 
atmospheric activities, producing good 
long-term forecasting for periods of at 
least a complete cycle of ENSO/PDO/NAO 
and Sunspots. It seems that the dynamics 
is essentially non-chaotic in this time 
scale, but perturbed by a fairly large 
amount of noise. Moreover, some 
meteorological variables over Brazil could 
be accurately predicted taking into 
account the model developed by artificial 
neural network. This approach recognizes 
very well the mutual dependence between 
spatiotemporal temperature and rainfall 
variability. 
 
Project: “Spatiotemporal Stochastic 
Characterization of the Brazilian 
Climatology.” A research program with the 
aim of better investigating the impact of 
data quality and homogeneity issues 
(filtering “anthropogenic” factors) on the 
detection of Brazilian weather attributes: 

temperatures, precipitation, insolation, 
etc., “trends”, “bias” and “shifts”, in the 
last century. The series must be free of 
discontinuities, gaps and spurious values. 
The series must be homogeneous. Design: 
“Determination of Good Quality Reference 
Climatology.” 
 
Background: In JON K. EISCHEID et al, 
2000 (Creating a Serially Complete, 
National Daily Time Series of Temperature 
and Precipitation for the Western United 
States, Journal of Applied Meteorology, 
AMS), six different methods of spatial 
interpolation were used to create the 
serially complete dataset for the western 
United States (all states west of the 
Mississippi River) includes 2034 
minimum-maximum temperature stations 
and 2962 total daily precipitation 
locations. The methods were: (1) the 
normal ratio method (NR); (2) simple 
inverse distance weighting (IDW); (3) 
optimal interpolation (OI); (4) multiple 
regression using the least absolute 
deviation criterion (MLAD); (5) the single 
best estimator; and (6) the median (MED) 
of the previous five methods (Eischeid et 
al. 1995). Results: The interpolation 
schemes were evaluated by monthly 
integration method. The cross-validation 
of the results indicated a distinct 
seasonality to the efficiency of the 
estimates, although no systematic bias in 
the estimation procedures was found. 
Statistical summaries were generated 
using cross correlations between observed 
daily values and those estimated for each 
of the six different methods described. 
The six techniques respond to variations 
in season and geography, and the best 
estimation method is selected based on 
the efficiency of the estimate over time. 
The cross correlations were used to 
measure the efficiency of each method, 
and the method that exhibits the highest 
correlation relative to the other methods 
is utilized to replace missing values. 
 
Additional investigations performed by the 
Northeast Regional Climate Center 
(DeGaetano et al., 1993) have shown that 
regression based methods of data 
estimation tend to be more accurate than 
within-station methods. Additional work 
(Huth and Nemesova, 1995) has shown 
that other weather elements, such as 
relative humidity, wind speed, and 
cloudiness, contribute very little to 
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regression-based methods and that 
temperature at neighboring stations has 
by far the highest spatial correlations. 
DeGaetano goes on to mention that ‘‘while 
such methods are useful over limited 
areas, they are computationally intensive 
and therefore not feasible when data 
estimates are needed for a large number 
of stations over a long period of time’’ 
(DeGaetano et al., 1993). These 
limitations have been partially overcome 
with the use of new high-speed 
workstations and large mass storage 
capabilities that now provide the 
horsepower required to perform these 
intensive calculations in a reasonable 
time period. 
 
Because estimates are required for each 
day separately over a variety of terrain 
with a differing number of available 
surrounding observations, we have 
chosen a different method for filling 
meteorological gaps.  
 
ARTIFICIAL NEURAL NETWORK (ANN) - 
EMPIRICAL BAYESIAN UPDATING. 
Lemma 1: The prior information at time t 
can be modelled by a temporal prior 
function: 

 Y(Θ(t)) = ƒ(Θ(t) | Z(t1),…, Z(tn)).  
 

The efficiency of the temporal prediction 
process depends on some considerations, 
as the decision of stationarity. 

 
Lemma 2: The model of temporal 
dependence allows an Empirical Bayesian 
Updating of any prior Y(Θ(t)) by 
“neighbouring” related data. 

 
The basic idea is to interpret the prior 
distribution Y(θ∈Θ(t)) as realisations of the 
corresponding temporal random function 
Y(Θ(t)), which allows an updating of the 
prior distribution, ƒ(Θ(t)). The 
implementation is via Gibbs sampler, 
where the degree of belief (credibility) is 
assessed to exploit the uncertainties 
associated with the interpolation process! 
 
The spatiotemporal dependence can be 
explored by examining the distribution of 
nearest-neighbour distances. The 
bandwidth determines the amount of 
smoothing of the point pattern (using the 
weighted Euclidean distance). This study 
estimated bandwidth as the space-time 
average (k, ϕ, θ) nearest-neighbour 

“distance” among points. The value of (k, 
ϕ, θ) is chosen by the analyst to specify 
the desired degree of smoothing of the 
data. Small k (ϕ, θ) values result in a 
small spatial (temporal) bandwidth, 
producing a spiky map with little 
smoothing (good time dependence). Larger 
k (ϕ, θ) values result in a larger spatial 
(temporal) bandwidth and smoother 
density map (fake time dependence). 
 
EXPERIMENTAL DATASET. 
The 27 (26+1DF) states reflect a wide 
variety of terrain and a diversity of 
climatic regimes, which allows a means 
for testing the efficacy of daily estimates 
for regional and seasonal differences. In 
addition, with few exceptions, the 
geographic distribution across the 
Brazilian states is non-uniform, which 
provides a non-stable estimation 
environment. 
 
Practical Aspects: In any spatial 
interpolation scheme the selection and 
quantity of surrounding stations are 
critically important to the results of the 
interpolations. Problems arise when using 
climatological data because of missing 
values and the varying availability of 
stations through time. In order to 
determine which stations are to be used, 
surrounding stations are pre-selected 
based on their relationship with the target 
station. The closest stations are identified 
for each target station and are ranked by 
the value of the correlation coefficient 
between the candidate station and its 
neighbours. 
 
The ANN estimation technique based on 
spatiotemporal objective analysis scheme 
is used to estimate daily values, with the 
‘‘best’’ estimate chosen as a missing value 
replacement for the development of 
regional daily minimum-maximum 
temperatures and total precipitation time 
series over Brazil.  
 
MISSING DATA ESTIMATION. 
The replacement of missing daily values 
for temperatures and total precipitation 
includes the use of nearby simultaneous 
values to calculate an estimated value at 
the target station over the period of time 
for which adequate data are available. The 
efficiency, or accuracy, of the estimates 
over a long period of time provides the 
information used to assess the quality of 
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estimated daily values. Estimated daily 
values are used in lieu of missing values 
as a means of making a particular station 
serially complete. There are numerous 
spatial interpolation methods available for 
point estimation with irregularly spaced 
data. Typically, the choice of methodology 
is dependent on several factors: the 
meteorological variable under 
consideration, the geographical area, the 
spatial distribution of surrounding 
observations, and the day–month–season 
for which the target station is to be 
estimated 
 

 
 

Fig. 1:  Brazil Political Map. 
 
In this research work we propose an 
interpolation method based on the 
representation of the data as a parametric 
model plus a random process (like 
Kriging): 
 
RGTARGET (s,t) = µTARGET (s,t) + εTARGET (s,t), 

 
where (s,t) are the discrete location and 
the time coordinates, respectively: 
 
µTARGET (s,t) = β1.RGNN1(t) + … + βK.RGNNK (t) 
+ α1,-ϕ.RGNN1(t-ϕ) + … + α1,ϕ.RGNN1(t+ϕ)+ … 
+ αK,-ϕ.RGNNK(t-ϕ) + … + αK,ϕ.RGNNK(t-ϕ) + λ-

θ.µTARGET (s,t-θ) + … + λθ.µTARGET (s,t+θ);  
 
with NN1, …, NNK the k-nearest-
neighbours from ϕ and θ (the model order) 
prior time lags. 
 

RG(s+κ,t) = µ(s+κ) + δ(s+κ,t) + IH(s+κ,t), 
 

where µ(s+κ) is RG’s climatological normal 
value, δ(s+κ,t) is the anomaly related to 
the instant t and IH(s+κ,t) is the possible 
inhomogeneity lying in the measured 
value RG(s+κ,t). By using an analogous 
notation, a reference series which is 
constituted, for example, by the data of a 
neighbouring station can be written as 
follows: 
 

RG(s,t) = µ(s) + δ(s,t) + IH(s,t). 
 
If the two series belong to the same 
climatic area, it can be assumed that µ(s,t) 
= µ(s+κ,t) for each value of t. If the 
reference series is homogeneous: IH(s+κ,t) 
→ 0. Therefore, the series of the 
differences and ratios between stations of 
the same area will be: 
 
ε(t) = RG (s,t) - RG (s+κ,t)      
= (δ(s,t) - δ(s+κ,t) ) + IH(s,t) → γ (constant); 
 
π(t) = RG(s, t) /  RG(s+κ, t)  
= [µ(s+κ) + δ(s+κ, t) + IH(s+κ, t)] /  
[µ(s) + δ(s+κ, t) + IH(s, t)] → η (constant). 
 
The number of neighboring stations 
meeting the criteria is not fixed in time. It 
varies depending on available station data 
for the year/month/ day in question. As 
such, the interpolation model may also 
change in time. Moreover, the 
surrounding stations that may be optimal 
for a particular calendar month may not 
be optimal for a different month. Thus, 
the station selection procedures are 
computed for each calendar month 
separately. 
 
LARGE-SCALE TELECONNECTIONS. 
The El Niño Southern Oscillation (ENSO) 
phenomenon is the major cause of year-
to-year variations in climate over lower 
latitudes and one of the most significant 
causes of global climate change on this 
timescale. The ENSO is associated with 
disruption to tropical climates in many 
regions. The Southern Oscillation Index 
(SOI) is a pronounced disturbance of the 
atmospheric circulation over lower 
latitudes of the Pacific sector.  
 
The Trans-Niño Index (TNI), which is 
given by the difference in normalised 
(1950-79) anomalies of SST between 
Niño1+2 and Niño4 regions, is used as an 

32



 

optimal description of the character and 
evolution of El Niño or La Niña.  
 
The Pacific Decadal Oscillation (PDO) is a 
leading index associated to the ENSO 
phenomenon by taking into account the 
monthly Sea Surface Temperature (SST) 
anomalies in the North Pacific Ocean. In 
effect, to characterize the nature of the 
ENSO, SST anomalies in different regions 
of the Pacific is used. 
The North Atlantic Oscillation (NAO) is a 
major disturbance of the atmospheric 
circulation and climate of the North 
Atlantic region, linked to a waxing and 
waning of the dominant middle-latitude 
westerly wind flow during winter. 
 
The NAO exerts a strong influence on 
year-to-year climate variability and there 
is evidence of long-term trends in 
variability of this phenomenon. It is 
related to the shorter-term shift between 
zonal and meridional circulation types 
that occurs on a day-to-day time scale 
and is know as the index-cycle. 
 
ARTIFICIAL NEURAL NETWORK. 
The use of ANN has been recognized 
recently as a promising way of making 
predictions on time series, detecting 
irregular behaviour. 
 
In practice, one determines the 
embedding dimension (number of past 
observations) of the time series attractor 
(delay time that determine how data are 
processed) and uses these number to 
define the network’s architecture.  
 
Physically, the attractor is the object to 
which the time series in a phase space 
(space in which each point describes the 
state of a dynamical system as a function 
of the non-constant parameters of the 
system) is attracted to. 
 
Meteorological attributes can be 
accurately predicted by the 
spatiotemporal ANN model architecture: 
designing, training, validation and testing. 
The best generalization of new data is 
obtained when the mapping represents 
the systematic aspects of the data, rather 
capturing the specific details (e.g. noise 
contribution) of the particular training set. 
The evaluation of the error function. 
 

ANN TRAINING ALGORITHM –  
BAYESIAN UPDATING. 
Mathematical techniques for minimizing 
the discrepancy between a parameterized 
function and a set of pairs of inputs and 
"correct" outputs, where the overall 
function is partitioned into layers of 
vector functions. 
 
Back Propagation: Back propagation is 
the best-known training algorithm for 
multi-layer neural networks. It defines 
rules of propagating the network error 
back from network output to network 
input units and adjusting network 
weights along with this back propagation. 
It requires lower memory resources than 
most learning algorithms and usually gets 
an acceptable result, although it can be 
too slow to reach the error minimum and 
sometimes finds not the best solution. 
 
Quick Propagation: Quick propagation is 
a heuristic modification of the back 
propagation algorithm. This training 
algorithm treats the weights as if they 
were quasi-independent and attempts to 
use a simple quadratic model to 
approximate the error surface. In spite the 
fact that the algorithm hasn't theoretical 
foundation, it's proved to be much faster 
than standard back-propagation for many 
problems. Although sometimes the quick 
propagation algorithm may be instable 
and inclined to stuck in local minima. 
 
MODELLING UNCERTAINTIES. 
After estimating daily temperatures and 
precipitatino, a series of internal 
consistency checks were performed to 
ensure that estimates did not violate 
obvious constraints associated with 
recording weather attributes. 
 
Modelling the uncertainty associated to 
the selected meteorological time series. 
The fuzzy set theory models uncertainty 
related to stochastic evaluation procedure 
based on expert knowledge through 
subjective modelling. 
 
The fuzzy set theory models uncertainty 
based on expert knowledge through 
subjective modelling. Fuzzy theory is a 
method that facilitates systems’ 
uncertainty analysis where uncertainty 
arises due to vagueness or “fuzziness” 
rather than due to randomness alone. 
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Fuzzification is a methodology to 
generalize any specific theory from a 
discrete (crispy) to a continuous (fuzzy) 
form. The fuzzy logic can be a 
generalization of the classical set theory, 
the statements are described in terms of 
membership functions that are 
continuous and have a range [0,1]. In 
practice: 
1. Define variables to be used in 

determining Sensitivity and Adaptive 
Capacity. 

2. Apply a multi-criteria model to 
develop a Sensitivity index and an 
Adaptive Capacity index: 

 
 
 
ωij is obtained through ANN, which 
determine weights (e.g., importance) of 
each variable; cij  is obtained through 
value functions, which transform the 
natural scales of all variables or criteria 
into a scale of [0,1]. 
3. Aggregate the two indices through 

Fuzzy Logic. 
4. Vulnerability is defined by categorical 

variables: Low Vulnerability,   
Moderate Vulnerability, High 
Vulnerability. These Categorical 
Variables are transformed into Fuzzy 
Sets. 

 
WAVELET ANALYSIS FOR DATA 
QUALITY . 
The wavelets are suitable to analyse 
certain nonstationary time series and 
classes of autocorrelated processes. They 
are especially useful for the examination 
of the characteristics of time series on 
different scales and are already used in 
various fields of application. 
 
Detecting inhomogeneities and correct 
them! Making a comparison between 
candidate series and series that have 
been constructed by a weighted average of 
some selected station series.  
 
We apply the Discrete Wavelet Transform 
(DWT) for trend estimation and shift 
detection. This estimate is used to 
establish a test, which is suitable for 
correlated data non homogeneity 
detection. Furthermore wavelets are 
applied to examine the behaviour of the 
data on different scales (frequency 
components): 
 

H0: No Trend (No Shift) 
x 

H1: Significant Trend (Shift Exists) 
 
The test assume that the observed time 
series can be modelled additively by a 
deterministic trend (shift: change 
intervention or break point) component 
plus a realisation of a stochastic process. 
Using the DWT, the data vector is 
decomposed into a component, 
representing the variability on large scales, 
and another for small scales. 
 
HOMOGENISATION. 
To validate this work-algorithm, the 
diagnostic of homogenised rainfall was 
accomplished. The spatial distribution of 
rainfall is summarised by the subjective 
descriptive four-moment measures: Mean, 
Variance, Skewness and Kurtosis, giving 
support to spatial pattern recognition. A 
number of homogeneity tests with kinds 
to detect non homogeneities are employed 
(methods currently used – Chow & Pettitt, 
SNHT Alexandersson, Range Buishand  
test, Von Neumann ratio and Craddock 
tests) and the effect of natural variability 
is established taking into account 
ensembles of consecutive years. The 
significance of the adjustments was tested 
using the “Robust Modified Wilcoxon 
Rank Sum Test”. The “Customized 
Kendall τ Test” is used as a non-
parametric method to test the significance 
of trends. As expected, this robust 
reconstruction method has good 
performance, since more information is 
introduced in the decision-making system. 
 
SUMMARY. 
This work consists on the reconstruction 
of weather time series for Brazilian 
localities, substantiating the spatial 
consistency, apparent cycles and 
respective trends. This approach 
recognises very well the mutual 
dependence between spatiotemporal 
rainfall variability.  
 
This research work summarizes a 
procedure used to create serially complete 
daily temperature and precipitation 
datasets (1951–2000) for Brazil. 
Determining target and estimator stations 
by scanning the quality of individual 
station records, reconciling metadata 
(including observation times and station 
locations), and categorizing observation 
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times proved to be time consuming but 
necessary. Estimating the missing data 
values and cross validating the results 
proved to be relatively straightforward 
once preparatory work was accomplished. 
Our results show that the efficacy of the 
estimation procedure and thus the 
reliability of the estimated missing values 
are dependent on a number of factors. For 
all three meteorological parameters the 
selection and quantity of surrounding 
stations are critically important to the 
results of the interpolations. We feel that 
the pre-selection of surrounding stations, 
based on their relationship with the 
station to be estimated, is an integral first 
step. 

 
 
Fig.2: Daily Rainfall Reconstruction of 
an arbitrary Brazilian meteorological 
station. 
 
The conclusion highlight the use of 
climate proxies response as potential 
weather predictor. The use of ANN has 
been recognised recently as a promising 
way of making predictions on time series, 
detecting irregular behaviour. 
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Fig.3: Monthly TMIN, TMAX and 
Rainfall Reconstruction of an 
arbitrary Brazilian meteorological 
station. 
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Fig.4: Annual TMIN, TMAX and 
Rainfall Reconstruction of an 
arbitrary Brazilian meteorological 
station. 
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