
ON GRID GENERATION FOR NUMERICAL MODELS  
OF ATMOSPHERIC MODELING AND FORECASTING 

 
Ludmila Bourchtein, Andrei Bourchtein* 

Institute of Physics and Mathematics, Pelotas State University, Brazil 
 
 
1. INTRODUCTION 
 
       Large-scale geophysical processes 
including synoptic variability, global atmospheric 
and oceanic circulation, and climate dynamics 
imply formulation of related mathematical 
models in spherical geometry. The approximate 
solutions to these complex models are usually 
found by applying numerical methods and their 
quality depends on principal properties of 
numerical schemes: accuracy, stability and 
efficiency. 
       Generation of the computational grids is an 
important step for definition of the scheme 
properties. For regional models or chosen 
regions of global domain, the best possible 
uniformity of computational grid is frequently 
required because it assures the highest 
accuracy and stability for dynamical part and the 
most justified choice of the parameterization 
schemes for physical part of numerical model. 
Computational grids based on spherical 
coordinates are highly nonuniform, which causes 
the problems for both dynamical and physical 
parts of numerical schemes. In fact, an accuracy 
of any scheme depends on the greatest physical 
mesh sizes in the chosen domain and, therefore, 
nonuniform physical grids lead to the loss of 
accuracy in the greatest mesh size subdomains 
or unnecessary refinement in the smallest mesh 
size subdomains. Furthermore, absolute majority 
of the schemes used in atmosphere and ocean 
dynamics are explicit or semi-implicit and, 
therefore, their time steps must be proportional 
to space mesh size to satisfy the numerical 
stability criterion. Hence, excessive refinement 
of spatial resolution can impose physically 
unjustified restriction on the allowable time step. 
Other problems of nonuniform resolution are 
related to physical parameterizations used in a 
model. The choice of the parameterization 
scheme could be problematic because of 
different definition of subgrid scales in the 
regions with different physical mesh sizes. Thus, 
the most uniform computational grid over the 
considered domain assures more efficient 
numerical scheme with more reliable solutions. 
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       Different approaches used to solve this 
problem can be classified according to type of 
transformation of a sphere in the following way: 
conformal mappings from sphere onto plane, 
non-conformal mappings onto plane (such as 
gnomonic, icosahedral and geodesic grids) and 
conformal mappings from a sphere onto a 
sphere (Williamson 1979, Staniforth 1997, 
Pearson 1990, Bygaevskiy and Snyder 1995). 
Conformal mapping onto a plane is most 
widespread approach because it allows us to 
keep a simpler form of the primitive equations 
and guarantees locally isotropic treatment of 
derivatives and smoothness of physical mesh 
size variation. Commonly used conformal 
projections are stereographic, conic and 
cylindrical. The stereographic projections are 
frequently applied to high and middle latitude 
regions (Benoit et al. 1997, Grell et al. 1994, 
Robert et al. 1985, Staniforth 1997, Tanguay 
1989). They allow us to introduce more uniform 
grids than in the spherical coordinates as well as 
to eliminate the pole problem. The conic and 
cylindrical projections (Lambert and Mercator 
projections) are used for medium latitudes and 
tropical regions (Bourchtein 2002, Leslie and 
Purser 1991, MacDonald et al. 2000, Staniforth 
1997). All these conformal mappings can be 
tangent or secant depending on the type of 
intersection of sphere with plane, cone or 
cylinder.  
       If conformal mappings are based on 
geographical (polar) latitude-longitude 
coordinates then they are called polar 
projections, otherwise, they are called rotated or 
oblique projections (Pearson 1990, Bugayevskiy 
and Snyder 1995, Staniforth 1997). The rotated 
spherical coordinates and conformal projections 
can be obtained from the polar ones by moving 
the pole to the chosen point. For example, the 
rotated spherical coordinates are used in the 
regional models by Mesinger et al. (1988) and 
McDonald and Haugen (1992) where the central 
point of considered region is chosen as the 
intersection of "equator" and the "first" meridian 
of the new rotated spherical coordinates. The 
rotated spherical coordinates are also used in 
the polar regions of the global models (Bates et 
al. 1993, McDonald and Bates 1989).  
       This paper is structured as follows. In 
section 2 we introduce an important 
characteristic for quantitative measure of the grid 
uniformity. In section 3 some analytical solutions 
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to problem of uniform grid generation are 
presented for simple spherical domains in the 
form of spherical disks. The Chebyshev-Milnor 
theory is applied to computation of the mappings 
with the minimum possible distortion over more 
complex domains, including the South America 
territory, in section 4. Finally, comparison 
between uniformity of conformal and orthogonal 
grids for spherical disks is presented in section 
5. 
     
2. PROBLEM FORMULATION AND 

PRINCIPAL CONCEPTS   
 
       The problems of grid generation for 
hydrostatic and non-hydrostatic atmospheric 
models considered over spherical regions can 
be illustrated by study of the shallow water 
equations. In fact, all coordinate transformations 
to be studied deal with surface mappings and, 
therefore, all vertical operators are invariant 
under these transformations.  
       The primitive shallow water equations in the 
geographical longitude-colatitude spherical 
coordinates λ  and θ  have the following form 
(Williamson 1979):  
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is the total derivative, vu,  are the physical 
components of the velocity vector, gz=Φ  is the 
geopotential, z  is the height, g  is the 
gravitational acceleration, θΩ cos2=f  is the 
Coriolis parameter, Ω  is the modulus of angular 
velocity of Earth's rotation, a is the Earth's 
radius. 
       Using Cartesian coordinates of any 
conformal projection, the equations (1) can be 
represented as follows (Williamson 1979):   

x
mV

y
mU

x
mVf

dt
dU

∂
Φ∂

∂
∂

∂
∂

−=















+−+−  , 

y
mU

y
mU

x
mVf

dt
dV

∂
Φ∂

∂
∂

∂
∂

−=















+−++  , 

          ( ) ( )








+−=

y
mV

x
mUm

dt
d

∂
∂

∂
∂ΦΦ 2   .      (2) 

Here the total derivative is defined as 
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where, U  and V  are the physical components 
of velocity with respect to axes x  and y , and 
function ( )yxm ,  is the mapping factor (scale 
function) defined as the ratio between 
elementary arc lengths along plane curve and 
respective spherical curve. One can see that the 
shallow water equations keep a simple form 
under conformal transformation.  
       The shallow water equations have the 
similar form also in rotated spherical coordinates 
and Cartesian coordinates of arbitrary oblique 
conformal mapping. Indeed, geometrically the 
rotated spherical coordinates differ from 
geographical ones only by choice of the Poles 
and the first meridian. Algebraic formulas 
relating these coordinates have the form  
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where λ′  and θ ′  are the rotated spherical 
coordinates, and ( )000 θλ ,=P  is the new "North 
Pole" in the rotated coordinates. It is simple to 
show that the equations (1) keep the same form 
in the rotated coordinates except for definition of 
the velocity components and the Coriolis 
parameter (McDonald and Bates 1989). Since 
oblique conformal mapping is the polar one for 
the rotated spherical coordinates, the shallow 
water equations in the Cartesian coordinates of 
any oblique conformal projection have the form 
(2) with respective definition of the velocity 
components and Coriolis parameter.  
       Let us consider the "ideal" physically 
uniform grid with mesh size 0h  and another 
computational grid uniform in Cartesian 
coordinates ( )yx,  used for discretization of (2) 
with mesh size 1h . The real (physical) 
approximation is the best in the points of 
computational grid where mapping factor m  
reaches maximum values maxm  and it is the 
worst in the points with minimum values minm . If 
we assume that the overall accuracy of a 
numerical scheme is defined by regions with the 
greatest physical mesh size, then it is necessary 
to choose computational mesh size 

minmhh ⋅≈ 01  to guarantee the approximation 
equivalent to real physical mesh size 0h . 
Different schemes approximating the system (2) 
have the maximum allowable time step 
expressed by formula   
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where s  is the velocity of gravity waves in the 
case of explicit schemes (for example, leap-frog 
scheme), or maximum of wind velocity modulus 
for semi-implicit Eulerian schemes (for example,  
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Robert's scheme), or maximum variation of wind 
velocity in the case of semi-implicit semi-
Lagrangian schemes (Mesinger and Arakawa 
1976, Staniforth and Côté 1991, Durran 1999). 
Therefore, the number of time steps increases 

                                
min

max

m
m

=α                         (3) 

times, comparing with the ideal physically 
homogeneous resolution ( 1≡m ) and, 
consequently, the same scheme on the 
computationally homogeneous grid takes α  
times more computations than on the ideal 
(physically homogeneous) grid where 1=α . 
Two projections are considered equivalent on 
chosen domain if their variation coefficients are 
equal. If the form of primitive equations is 
equivalent in different coordinates, hence, the 
problem of optimization of the coordinate system 
consists of finding a projection type with 
minimum value of variation coefficient α . This is 
the case of polar and oblique conformal 
mappings, including the mostly used 
stereographic, conic and cylindrical projections.  
 
3. SOME THEORETICAL RESULTS ON 
MINIMIZATION PROBLEM 
 
       For subsequent references, let us recall 
some basic formulas of the specific conformal 
mappings. The stereographic tangent projection 
of the sphere of radius a  onto a plane with 
Cartesian coordinates x,y can be written in the 
form (Williamson 1979, Pearson 1990, 
Bugayevskiy and Snyder 1995) 
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       The set of the conic conformal projections 
tangent to the sphere at the points of colatitude 

0θ   (from ( )20 π,  ) is defined as follows 
(Pearson 1990, Bugayevskiy and Snyder 1995)   
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where ( )100 ,cos ∈= θn  is the parameter 
specifying the mapping of this set.  
       The cylindrical conformal mapping tangent 
to the sphere at the points of the equator has the 
form (Williamson 1979, Pearson 1990, 
Bugayevskiy and Snyder 1995) 

2
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       The respective mapping factors of the 
above projections can be expressed as follows 
(Williamson 1979, Pearson 1990, Bugayevskiy 
and Snyder 1995): 
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In (Bourchtein and Bourchtein 2003) it was 
proved the principal inequality  

concylstr ααα << , 
which allows to compare these three groups of 
mappings and shows that the stereographic 
mapping tangent to the sphere at the central 
point of the considered domain Ω  is the best 
choice whatever location and extention of a 
spherical domain are selected.  
       Now we can strengthen this result for one 
special case of the spherical domain. Let us 
consider the spherical disk γΩ  of the spherical 

radius γa  ( ( )πγ ,0∈  ) consisting of all sphere 
points ( )θλ,,aP =  whose spherical (geodesic) 
distance from the centerpoint ( )000 θλ ,,aP =  is 
less than γa : ( ) γaPPdS ≤,0 . By definition, the 
distance between sphere points 0P  and P  is the 
length of the shorter great circle arc joining these 
points. 
       In what follows we need the following 
Chebyshev-Milnor theorem (Milnor,1969): if  Ω  
is a simply connected open spherical domain 
bounded by a twice differentiable curve, then 
there exists one and, up to a similarity 
transformation of the plane, only one conformal 
mapping which minimizes the variation 
coefficient (3). The "best possible" conformal 
mapping is characterized by the property that its 
scale function m is constant along the boundary 
of Ω .   
       A direct application of this theorem shows 
that found in (Bourchtein and Bourchtein 2003) 
the stereographic projection tangent to the 
spherical disk γΩ  at the centerpoint 0P  has the 
minimum variation coefficient in the entire class 
of conformal mappings. In fact, since the 
spherical disk is of required geometry and 
smoothness, the theorem assures existence of 
the "best possible" mapping. With no loss of 
generality we can consider the centerpoint 0P  
be the North Pole (otherwise, it is sufficient to 
apply the theorem in rotated spherical 
coordinates). Evidently, the above chosen 
stereographic mapping has the constant value 
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mapping factor ( )γcos+= 12m  on the disk 
boundary γΩ∂ . Therefore, this mapping has the 
minimum variation coefficient α .  
       Given mapping factor m , the problem of 
finding the coordinate functions of the "best 
possible" conformal mapping consists of solution 
to the following first order non-linear partial 
differential equations (Bugayevskiy and Snyder 
1995):                                            
  222222 mahh ⋅=⋅+ θθ θλ sinsin ,  yxh ,= . (10) 
       Except for the above case of the 
stereographic mapping, we do not know another 
analytical solution to equation (10) useful for grid 
generation.  
     
4. APPROXIMATE SOLUTIONS FOR 
CONFORMAL MAPPINGS 
 
       Although the analytical results regarding 
minimization of variation coefficient are very 
scarce, some information about mapping 
properties can be obtained by applying the 
following results of the Chebyshev-Milnor theory 
(Milnor, 1969): the mapping factor m  associated 
with a conformal mapping h on a simply 

connected open spherical domain Ω  
determines h  up to a (orientation preserving or 
reversing) rigid motion of the plane. A given 
positive real-valued function m  on Ω  is the 
mapping factor associated with some conformal 
mapping h if, and only if, m  is twice 
differentiable and satisfies the differential 
equation 

12 =ma ln∆  in Ω , 
where ∆  is the Laplace operator.       
       Since usually the computational domain is 
rectangle, it is of practical interest to find out 
what happens if a spherical domain has 
rectangular image in the plane. First we find the 
"best" mapping factor for a spherical domain 
projected onto square S  centered at the origin 
of planar coordinates and compare the obtained 
result with that of the "best" stereographic 
mapping. To this end, according to the 
Chebyshev-Milnor theory, we should solve the 
following boundary value problem for the 
function mg ln= : 

         2−= ag∆  in Ω ,  0=g  on Ω∂ ,            (11) 
where Ω∂  is the boundary of the domain Ω .  

 

 
Figure 1. Variation coefficient of the "best possible" and stereographic mappings for the computational 
square. Each line represents the variation coefficient plotted as a function of the square side length d: 
solid line is for the "best" conformal mapping, dashed line is for the stereographic mapping and dotted 
line is for stereographic mapping optimized for the respective disk of the same area. 
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       Since the spherical geometry of the domain 
Ω , which has the square image S  on the 
plane, is not simple, we transform the problem 
(11) to the planar one by applying auxiliary 
stereographic mapping: 

( )2222

2

22
4

161

yxa

a
am

ggg
str

yyxx
++

==+≡∆  

                     in S ,  0=g  on S∂ .                 (12) 
It is well-known that this problem has the unique 
solution in the class of twice differentiable 
functions (actually, the solution is analytical 
function) (e.g., Evans 1998). Though the last 
problem can be solved analytically in the form of 
Fourier series, the most simple and accurate 
way to obtain the solution is the application of 
standard numerical techniques. For example, a 
second-order finite-difference approximation 
followed by the successive overrelaxation 
method supply a sufficiently accurate solution.  
       The results of the computation of the 
variation coefficient for the "best possible" 
conformal mapping are shown in Fig.1 as a 
function of the length d  of the square side (solid 

line). It can be compared with the variation 
coefficient of the stereographic mapping (dashed  
line). Also the variation coefficient of the 
stereographic mapping whose image is the 
planar disk of the radius πd  is plotted (dotted 
line). This disk has the same area as the 
respective square. As it was expected, the two 
lines for the best mappings onto the square and 
disk domains are sufficiently close. The 
difference between the best and stereographic 
mappings for the square domain becomes to be 
apparent for the square side lengths greater 
than 6000km.   
       Similar computations were performed for 
rectangular domains with the greater/smaller 
side ratio 3/2 and 2/1. The rectangular 
computational domains are common in the 
regional atmospheric modeling based on both 
finite difference and finite element methods. The 
obtained results are shown in Figs. 2 and 3. 
Qualitatively the situation is the same as for the 
square image, but the differences are greater 
due to the size of the rectangles.  
 

 
 

 
Figure 2. The same as Fig.1, except for computational rectangle with smaller side length d and ratio 
3/2 between greater and smaller sides.  
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Figure 3. The same as Fig.1, except for computational rectangle with smaller side length d and ratio 
2/1 between greater and smaller sides. 
 
       Finally, we evaluate the mapping 
characteristics on South America region. Using 
the rectangular domain on the image plane, 
which contains the planar image of the South 
America, we obtain the variation coefficients for 
different mappings shown in the first line of 
Table 1. If we restrict the mapping to only South 
America territory, then the approximate values of 
α  are given in the second line. The third option 
is related to the case when one is interested in 
atmospheric modeling over all South America 
territory. It is well-known that the lateral 
boundaries of regional models must be removed 
from the area of interest at least about 1000km 
for 24-h forecast, because near-boundary 
regions are strongly affected by boundary 
conditions supplied by another model (Anthes et 
al. 1989, Staniforth 1997). In this case it 
increases significantly the overall extension of 
the modeling territory, which reflects in a greater 
variability of variation coefficients. The third line 
represents the results of this simulation and one 
can see that the differences among variation 
coefficients can not be disregarded.  
       To solve the last two problems we have 
used the geographical coordinates of the South 
America contour with the step of 2.5 degrees. 
These data was projected on planar domain and 
consecutive points were jointed piecewise 
linearly forming this way a polygonal domain. 

The problem (12) was solved on the polygon 
using a more complex version of the above 
mentioned iterative method with the steps of 
250km and 500km. The same computations 
were made with boundary points resolution of 5 
degrees. Since the obtained results were quite 
close we believe the shown values are the good 
approximations to exact solution of minimization 
problem. 
 
Table 1. Comparison of the variation 
coefficients. The columns form the second to 
fifth contain the  results for the best possible, 
stereographic, cylindrical and conic conformal 
mappings, respectively; R – rectangular domain, 
SA – South America, SA+ - South America and 
adjacent regions. 
Domain best stereogr cylindr conic 

R 1.076 1.156 1.221 1.315 
SA 1.028 1.138 1.221 1.276 

SA+ 1.059 1.243 1.397 1.454 
 
       Let us note that each time we have used the 
most optimal variant of the indicated class of 
mappings. For example, the stereographic 
mapping means such stereographic projection 
which assures the minimum variation coefficient 
among all (polar and oblique, tangent and 
secant) stereographic mappings. As it was 
shown in (Bourchtein and Bourchtein 2003) this 
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is stereographic mapping tangent to sphere at 
the central point of the chosen domain. If one 
choose the traditional stereographic mapping 
perpendicular to the pole axis and secant at the 
central latitude of the domain, then the results 
are much worse: for the South America with 
adjacent areas territory the variation coefficient 
of such mapping is about 3.0. Similar results can 
be obtained for non-optimal cylindrical and conic 
conformal mappings: the traditional cylindrical 
mapping (tangent or secant) with cylinder axis 
parallel to polar one gives 2742.=cylα  and 
standard conic mapping tangent at the central 
latitude or secant at the middle latitudes of the 
chosen region gives 6531.=cylα . 
 
5. COMPARISON BETWEEN CONFORMAL 
AND ORTHOGONAL MAPPINGS 
 
       In the last decade, the growing interest in 
more flexible computational grids gave rise to 
the application of more general mappings than 
conformal ones, in particular, to the use of 
orthogonal mappings, which still maintain a 
simpler form of the hydrodynamic equations 

(Rancic et. al. 1996, Murray 1996, Cote 1997, 
Fox-Rabinovitz et.al. 2000, Kernkamp et.al. 
2005). For this reason, it is useful to compare 
the "best" conformal and orthogonal mappings. 
To this end, we should to generalize the 
concepts of the mapping factor and variation 
coefficient because they are not applied for more 
general mappings than conformal ones.  
     Let ( )BAdE ,  denote the Euclidean distance 
between the points A  and B  in the plane. The 
scale of a mapping h with respect to a pair of 
distinct points P  and Q  in the spherical domain 
Ω  is defined to be the ratio  

                          
( ) ( )( )
( )QPd

QhPhd

S

E

,
,

 .                    

The minimum (maximum) scale minσ  ( maxσ ) is 
defined as the infimum (supremum) of the above 
ratio over all pairs of distinct points in Ω . The 
next concept is a generalization of the concept 
of the variation coefficient for non-conformal 
projections: the distortion δ  of the mapping h is 
the ratio of maximum scale to minimum scale, 
that is, minmax σσδ = .  

 
 

Figure 4. Distortion of the azimuthal equidistant and stereographic mappings for the spherical disk. 
Each line represents the distortion plotted as a function of the spherical radius: solid line is for the 
azimuthal equidistant projection and dashed line is for the "best" stereographic mapping. 
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       A minimum distortion mapping 0h  on Ω  is 
a map projection whose distortion 0δ  is less 
than or equal to the distortion of every other 
mapping on Ω . Milnor (1969) has proved that 
the minimum distortion mapping exists in the 
class of orthogonal mappings and for spherical 
disk γΩ  this mapping is azimuthal equidistant 
projection with distortion  

γ
γδ

sin
=0  . 

       Again it is sufficient to consider the spherical 
disk centered at the North Pole. In this case the 
azimuthal equidistant mapping is defined by 
formulas (Pearson 1990, Bugayevskiy and 
Snyder 1995)   

λϕ =  , θar =  , 
and it is orthogonal (but non-conformal) mapping 
that carries each longitude into a straight line 
passing through the origin in the plane, and each 
latitude into a circle centered at the origin.  
       In Fig.4 we plot the distortion of the 
azimuthal equidistant and conformal mappings 
as a function of the spherical radius γa . It can 
be seen that orthogonal mappings assure visibly 
better uniformity than conformal ones for the 
spherical radius greater than 5000km. If the 
spherical radius is smaller than 4000km, then 
the difference between two projections can be 
ignored. 
       To the best of our knowledge, there are no 
analytical or numerical results about the 
minimum distortion mappings for other domains. 
So we have no possibility to compare the best 
conformal and orthogonal mappings for 
rectangular domains or for South America region 
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