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The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations
are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density
reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff
whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent
with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for
stochastic growth of an extended structure.
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Statistical plasma theories, such as stochastic growth
theory [1,2] (SGT) and self-organized criticality (SOC)
[3,4], have enjoyed wide success in describing nonuniform
fluctuations in complex systems. In particular, complex
initial and/or boundary conditions, sources, and sinks of
energy, and nonlinear evolution can lead to a highly non-
uniform plasma structure in a state of dynamical equilib-
rium. In these systems, textbook models of wave growth
that assume simply structured initial conditions offer little
insight into emergent properties such as marginal stability.
In contrast, statistical plasma theories connect the salient
features of the wave physics to characteristic distributions
of wave properties. For example, in SGT a randomly
varying wave growth rate leads to a lognormal distribution,
in SOC ‘‘sandpile avalanche’’ type behavior yields scale-
free power-law distributions, while Gaussians are expected
in many contexts. SGT has wide applicability [5,6] in-
cluding type III solar radio bursts [5], magnetospheric
Langmuir, beam and z-mode waves [7], and pulsar emis-
sions [8], plus a range of quasilinear, particle-in-cell, and
other simulations [6]. Evidence for other statistical plasma
theories, such as SOC, has been found in solar flares and
the intermittent turbulence of the Earth’s magnetotail [9–
11] and it has been invoked to describe confinement and
transport phenomena in magnetically confined plasmas
[12,13].

These successes motivate searching for new applications
of statistical plasma theories. In this Letter we perform a
statistical analysis of fluctuations in a laboratory plasma
and find lognormal distributions over a wide range of field
strength, the first laboratory evidence for an SGT state.
Also, a departure from lognormality at high-field strengths
is shown to be consistent with nonlinear saturation of a
spatially extended eigenmode structure.

The device used to obtain the data is a vacuum arc
centrifuge (VAC), a magnetized plasma device originally

designed to separate nuclear isotopes. It uses an arc dis-
charge to form a multiply ionized (Z > 1) low tempera-
ture (T � 6� 104 K) high density (ni � 1018 m�3) Mg
plasma. The plasma is situated in an axial magnetic field
(B � 0:1 T) and is formed by drawing a 1 kA arc between
a metal cathode and a wire mesh anode 60 mm distant. As
the return current passes through the mesh, resistive losses
generate a radial electric field. The interaction of the
resultant radial current with the axial magnetic field drives
the plasma into rigid rotation at approximately 30 kHz. The
plasma then streams supersonically through the mesh with
axial velocity �10 kms�1 and is confined by the axial
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FIG. 1 (color online). Schematic of the plasma centrifuge. The
cathode is vaporized by the high voltage trigger and accelerated
towards the anode mesh by an arc discharge. The combination of
radial motion and axial magnetic field sets the plasma into
rotation, and it streams helically through the anode to the end
plate. Adapted from Ref. [15].

PRL 99, 205004 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 NOVEMBER 2007

0031-9007=07=99(20)=205004(4) 205004-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.205004


magnetic field. Figure 1 shows a schematic of the VAC
used here, the Plasma Centrifuge at the Laboratório
Associado de Plasma of Brazil’s Instituto Nacional de
Pesquisas Espaciais [14].

Data for this work are from an extensive set of experi-
ments designed to explore properties of the electrostatic
oscillations observed in VACs [15]. A Langmuir probe was
inserted 150 mm downstream of the anode mesh to mea-
sure the floating potential. Measurements were taken at
nine radial locations from r � 0 mm to r � 32:5 mm. At
each location, eight plasma discharges were recorded. The
floating potentials were sampled at 106 samples per second
over a 5 ms interval (during which the discharge current
was flattopped) commencing 5 ms into the 16 ms pulse-
length discharge. The resulting 72 discharges yielded the
data analyzed below. Figure 2(a) shows the power spec-
trum of data from one discharge at r � 10 mm, along with
the power spectrum averaged over all discharges at that
position. The most striking feature is a 28 kHz quasiperi-
odic oscillation, modulated by a slowly varying envelope,
whose�3 dB bandwidth is� 10 kHz. By comparing field
profiles with a linear analysis based on a steady state model
in rigid body motion, the oscillation was identified as a
density gradient driven drift wave [15], propagating axially
and azimuthally. The azimuthal velocity was approxi-
mately the same as that of the plasma rotation. The linear
analysis predicted a growth time constant of only �0:1%
of the plasma lifetime, strongly suggesting the occurrence
of nonlinear saturation and consistent with the observa-
tion of second and third harmonics seen in Fig. 2(a). To
confirm the presence of nonlinear interaction, we com-
puted the bicoherence spectrum [16], defined at frequen-
cies f1 and f2 of the probe voltage V by B�f1; f2� �
hV�f1�V�f2�V

��f1 � f2�i (with suitable normalization),
where the asterisk denotes complex conjugation and angle

brackets denote averaging over an ensemble of sample
Fourier-transformed time series of V. Here, we split the
data from each shot into segments of 512 samples each
(with 50% overlap between segments), computed the
Fourier transform of each segment, and then the bicoher-
ence of each shot by averaging over the segments. In the
bicoherence, nonlinear interactions between Fourier com-
ponents at f1 and f2 produce correlated phases, resulting in
high B�f1; f2�. A representative bicoherence, averaged
over the eight shots at r � 10 mm, is shown in Fig. 3.
Nonlinear interactions between components at 28 kHz are
revealed, an indication of frequency doubling processes.
Other strong interactions include sum-frequency genera-
tion between the first and second harmonic, which yields
the peak at (28, 56) kHz, and frequency doubling of the
second harmonic, corresponding to the (56, 56) kHz peak.

To investigate the statistical properties of the field, we
computed the wave energy density W�t� as follows: the
slowly varying mean floating potential was removed by
high-pass filtering with a cutoff at fC � 20 kHz. After
low-pass filtering at 167 kHz (one-third the Nyquist fre-
quency), the resulting signal was squared, causing sum and
difference frequencies to be generated between the various
harmonics. By low-pass filtering with cutoff fE � 15 kHz,
we obtained, up to an undetermined proportionality, the
baseband energy density

 W�t� / V2
R�t� � V2

1 �t� � V
2
2 �t� � V

2
3 �t�; (1)

where Vi�t� is the ith harmonic amplitude and V2
R�t� is the

combined intensity of all harmonics. All filtering was
performed in the frequency domain and filters had an
error-function roll-off of characteristic width 5 kHz.
Figure 2(b) shows the time series after the initial high-
pass filtering step, along with the combined harmonic
amplitude VR�t�. The latter does not follow the field enve-
lope exactly, since it is a slowly varying phase-independent
estimate of the total energy in all three harmonics, whereas
the instantaneous amplitude is a coherent superposition of
the harmonics and depends on their relative phases. We
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FIG. 2. (a) Floating potential at r � 10 mm: power spectrum
of a single shot (gray) and average power spectrum over eight
shots (solid). (b) Floating potential fluctuation (lower curve) and
corresponding combined harmonic amplitude VE given by
Eq. (1) (upper curve).
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FIG. 3. Amplitude of the bicoherence, defined in the text, after
averaging over the eight shots at r � 10 mm.
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have confirmed that, if only one harmonic is present, VR
reproduces the field envelope. Inclusion of all three non-
linearly interacting harmonics in W�t� was necessary for
the good agreement with SGT shown below.

To enable comparison with SGT the gain G � logeW
was binned, with representative results shown in Fig. 4.
Good agreement with fitted normal distributions is seen
over a range �G � 5, or two decades in W. This is con-
sistent with SGT, which predicts lognormal distributions of
wave energy density and hence normal distributions of G.
Some shot-to-shot variation is also visible, especially at
low-field strengths, which we attribute to the complex
dynamics of the arc discharge, which are not perfectly
replicated in each shot. The elevated low-field tail of the
distribution seen in Fig. 4 is due to the approach to the one
count per bin statistical limit, while the drop-off at high
fields suggests the onset of nonlinear saturation, consistent
with the above observation of a phase-correlated second
harmonic via the bicoherence. We modified our fitting
function to incorporate both effects. Nonlinear saturation
can be included in SGT by adding an absorbing boundary
using the method of images [2]. This involves one addi-
tional parameter, the nonlinear cutoff level GC such that
P�G� � 0 for G>GC. A first approximation of the effect
of low bin counts is to add a constant � / 1=�N��, whereN
is the number of samples and � the bin width, so that �
corresponds to one sample per bin. The resulting distribu-
tion is

 P�G� � �� A
�
exp

�
��G��G�

2

2�2
G

�

� exp
�
��2GC ��G �G�2

2�2
G

��
; (2)

where GC is the nonlinear cutoff level and A is a normal-
ization constant. Figure 5 shows P�G� averaged over each

discharge at for various r, fitted to the resulting distribution
(2). Where the error bars are small, and the data are
statistically significant, agreement with the prediction of
SGT in the presence of a nonlinear cutoff is excellent. In
the low probability tail, where the predicted distribution
and data approach the one-count per bin level, there is also
agreement but this is inconclusive due to the large errors
and the rough approximation made above to the effects of
the one-count level. This approximation is also likely the
cause of the poor agreement in the crossover from good
statistics to the one-count level. Since the disagreement
occurs only where statistics are poor, and is excellent
where they are good (reduced �2 < 1 for points no more
than �G � 3 below the peaks of the curves in Fig. 5), it
does not appear to be critical to the overall interpretation.
Its full resolution will require detailed modeling of the low-
field structure and statistics, including the effects of noise,
which is beyond the scope of this Letter. However, the level
at which the discrepancy occurs is consistent with noise
levels observed, a point discussed further below.

Systematic radial dependence of GC and �G is evident
in Fig. 5, with the highest values occurring at r � 10 mm.
This motivates comparison with the theoretical eigenmode
potential Vth�r� [15]. The finite spatial resolution of the
measurements, primarily determined by the Langmuir
probe radial extent of 2 mm, was accounted for by con-
volving Vth�r� with a Gaussian kernel function K�r� of
corresponding width. Since the theoretical gain was only
determined up to an arbitrary additive constantG0, this was
a free parameter which we determined by fitting. A further
refinement here was the inclusion of a spatially uniform
background energy density F (discussed shortly) as an
additional fit parameter, so the fitted function is
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FIG. 4 (color online). Probability distribution functions of
field-strength gain at (a) r � 0 mm, (b) r � 10 mm, and
(c) r � 32:5 mm, normal distribution fits (solid line) and one-
bin count level (dotted line); at each radial position, results from
the eight discharges are shown with differing vertical offsets for
clarity. Error bars are 	1 standard deviation.
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FIG. 5. Distributions P�G� with best fit to SGT including a one
sample per bin background and nonlinear cutoff, labeled by
radial position in millimeters. For clarity, plots are vertically
offset with spacing 4. Error bars are 	1 standard deviation.
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 Gfit � G0 � loge
fVth�r� � K�r�g
2 � F�; (3)

where � denotes spatial convolution. Equation (3) was
fitted to both �G and GC independently, with the results
shown in Fig. 6. Uncertainties in �G and GC were esti-
mated from the shot-to-shot variation. The dotted curves
show the fitted Eq. (3) with F � 0, and show reasonable
agreement with the stochastic parameters. Allowing F to
vary (solid curves) improves the fits considerably, particu-
larly at large r. We attribute F to noise (seen over the full
frequency spectrum in Fig. 2) and/or the presence of higher
order modes which concentrate energy near the edges of
the plasma stream, for which there is some evidence in the
form of higher bicoherence in analogs of Fig. 3 at larger r.
For both �G and GC the fitted F is only about 1% of the
level of the peak of the theoretical curve peak at r �
9 mm, a value that suggests that these background fields
may also cause the poor fits at �G � 3–5 below the peaks
in Fig. 5. The good agreement between the fitted and
predicted nonlinear cutoff Gc, shown in Fig. 6(a), and
stochastic growth mean �G, shown in Fig. 6(b), thus
indicates that the entire eigenmode structure is undergoing
stochastic growth and nonlinear saturation, the first detec-
tion of stochastic growth of an extended structure.

Although one cannot consider all conceivable alterna-
tives to a lognormal, it is worth noting that the results here
are certainly not compatible with Gaussian distributions of
W, even if nonlinear and background-field effects were

allowed for, since Gaussians fall off too quickly far from
the peak. Likewise, there is no sign of the scale-free power-
law distributions of wave intensity that might be expected
if SOC applied, a point further reinforced by the eigen-
mode structure setting a preferred scale.

In summary, we have shown that fluctuation eigenmodes
in a vacuum arc centrifuge have a field-strength distribu-
tion that is consistent with a lognormal, modified by non-
linear saturation at high-field strengths and noise effects at
low ones, and with a spatial structure that follows the
predicted eigenmode profile. These results strongly imply
that the waves are undergoing stochastic growth. This
represents the first laboratory confirmation of SGT and
the first evidence for stochastic growth of a spatially ex-
tended eigenmode. Given these results and the numerous
situations where SGT is relevant, as cited in the introduc-
tory paragraphs, further investigation of statistical plasma
theories (not only SGT) in other experimental settings is
thus warranted.
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FIG. 6. Gain vs r; (a) nonlinear cutoff GC, as extracted from
gain PDFs (data points), and fitted theoretical curve (3) with
(solid line) and without (dotted line) background field F;
(b) stochastic mean �G (data points), and fitted theoretical curve
with (solid line) and without (dotted line) background field.
Error bars are 	1 standard deviation. The level of the spatially
uniform background field F is also shown (dashed).
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