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ABSTRACT

The purpose of this study is to develop and validate an algorithm for tracking and forecasting radiative
and morphological characteristics of mesoscale convective systems (MCSs) through their entire life cycles
using geostationary satellite thermal channel information (10.8 �m). The main features of this system are
the following: 1) a cloud cluster detection method based on a threshold temperature (235 K), 2) a tracking
technique based on MCS overlapping areas in successive images, and 3) a forecast module based on the
evolution of each particular MCS in previous steps. This feature is based on the MCS’s possible displace-
ment (considering the center of the mass position of the cloud cluster in previous time steps) and its size
evolution. Statistical information about MCS evolution during the Wet Season Atmospheric Mesoscale
Campaign (WETAMC) of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) was
used to obtain area expansion mean rates for different MCSs according to their lifetime durations. This
nowcasting tool was applied to evaluate the MCS displacement and size evolution over the Del Plata basin
in South America up to 120 min with 30-min intervals. The Forecast and Tracking the Evolution of Cloud
Clusters (ForTraCC) technique’s performance was evaluated based on the difference between the fore-
casted and observed images. This evaluation shows good agreement between the observed and forecast size
and minimum temperature for shorter forecast lead times, but tends to underestimate MCS size (and
overestimate the minimum temperature) for larger forecast lead times.

1. Introduction

Mesoscale convective systems (MCSs) are respon-
sible for most of the warm-season rainfall over tropical
South America (Velasco and Fritsch 1987; Vila 2005),
the Sahelian region (Mathon and Laurent 2001), and
various regions of the world. They are also responsible
for some extreme weather conditions, and the fre-

quency of convective systems is the principal factor in
determining interannual climate variability over west-
ern Africa (Le Barbé et al. 2002).

Nevertheless, in spite of their substantial contribu-
tion to the production of significant weather, these sys-
tems are not forecasted very well (Corfidi et al. 1996).
Knowledge of convective systems’ cloud processes and
evolution is important for understanding weather and
climate, particularly over the tropics. This issue is an
essential criterion for improving forecasting and, fol-
lowing this thought, reducing our vulnerability to ex-
treme weather damage.

Infrared imagery from meteorological satellites has
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been broadly used to study the behavior of the cloud
systems associated with deep convection for many years
(e.g., Houze 1977; Maddox 1980). The main advantage
of this approach is that for most of the globe the best
statistics can only be obtained from satellite observa-
tions. Such a satellite survey would provide the statis-
tics of MCSs covering the range of meteorological con-
ditions needed to generalize the results and, on the
other hand, only satellite observations can actually
cover the very large range of space and time scales,
including MCSs larger than a few hundred kilometers
in size, and their interactions with each other and with
the planetary-scale atmospheric circulation (Machado
et al. 1998).

The identification of predictor parameters of MCS
evolution, based on its previous life stage, could make a
significant contribution to a nowcasting scheme and can
provide important information for mesoscale model ini-
tialization (Machado and Laurent 2004).

Since this short-term forecast methodology is based
on MCS evolution, it is important to address how cloud
tracking techniques works in order to understand the
link between these two processes (track and forecast).

From the pioneer works of Woodley et al. (1980) to
Machado and Laurent (2004), many authors all around
the world have been working with different automated
cloud cluster tracking methods. Two methodologies
have been extensively used to track clouds using satel-
lite imagery: image overlapping and spatial correlation
patterns. Williams and Houze (1987) made an extensive
study over the western Pacific Ocean during the Winter
Monsoon Experiment and introduced forward and
backward tracking, while Mathon and Laurent (2001)
used infrared satellite imagery to track MCSs in the
Sahelian region during the rainy season. Morel and
Senesi (2002) developed a tracking technique [rapid de-
velopment thunderstorm (RDT)] to track MCSs over
Europe using an adaptive temperature threshold of in-
frared images. Over the American continent, the most
recent study of MCS characteristics using a similar
tracking technique was carried out by Machado et al.
(1998). Carvalho and Jones (2001) used a spatial cor-
relation approach to track MCSs in the Amazonian re-
gion, while Scofield et al. (2004) performed a similar
technique to determinate the clouds motion. A very
important issue in tracking methodologies (regardless
of the tracking scheme used) is that a brightness tem-
perature and a minimum size threshold are required to
identify MCSs from infrared thermal channels.

The purpose of this study is to present and validate
an algorithm to forecast (up to 120 min) the radiative
and morphological characteristics of MCSs using ther-

mal infrared channel information (10.8 �m) from geo-
stationary satellites.

The algorithm is described in section 2, while section
3 aims to validate the results of the methodology. The
main findings are summarized in section 4.

2. The ForTraCC algorithm

The Forecasting and Tracking the Evolution of
Cloud Clusters (ForTraCC) technique is an algorithm
that allows for the tracking of MCS radiative and mor-
phological properties and forecasts the evolution of
these physical properties (based on cloud-top bright-
ness temperature) up to 120 min, using infrared satellite
imagery (10.8 �m).

The main steps of this algorithm are the following: 1)
a cloud cluster detection method based on a size and
temperature threshold, 2) a statistical module to iden-
tify morphological and radiative parameters of each
MCS, 3) a tracking technique based on MCS overlap-
ping areas between successive images, and 4) a forecast
module based on MCS evolution in previous time steps.

a. MCS identification

Based on the concept that deep convection pen-
etrates into the upper troposphere, the first step in the
analysis is to identify all clouds that have tops well
above 9–10 km. Although the selection of a specific
temperature threshold to define clouds associated with
convective activity is arbitrary, different studies support
the idea that brightness temperatures below 245 K
identify satisfactorily convective systems. Maddox
(1980) identified mesoscale convective complexes
(MCCs) using Tir � 241 K, while Velasco and Fritsch
(1987) use a lower Tir value (231 or 233 K). On the
other hand, Machado et al. (1998) proposed a 245-K
brightness temperature threshold for MCS identifica-
tion, while temperatures between 238 and 235 K have
been found during the summer season for northern Ar-
gentina (Velasco and Necco 1980) to identify convec-
tion. Although the threshold selection will affect the
area covered by MCSs (and the total life cycle for a
given MCS), there is a near-linear dependence between
the cloud size and a given temperature threshold (typi-
cally below 245 K) in the range of 10–20 K (Machado et
al. 1993; Mapes and Houze 1992). In other words, the
selection of a brightness temperature threshold in the
previously defined range is describing, in mean terms,
analogous convective systems. In this study, a bright-
ness temperature threshold of 235 K has been chosen for
MCS detection because this threshold seems to be suit-
able for detecting clouds associated with convection in
different regions of South America, as suggested by
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Laurent et al. (2002), Machado and Laurent (2004), and
Carvalho and Jones (2001).

Another important issue is to define the minimum
size for detecting a given MCS. Different MCS size
thresholds for detecting and tracking MCSs have been
proposed by different authors. While Maddox (1980)
proposed that a Tir � 221 K area should overcome the
50 000-km2 criterion for MCCs, Torres (2003) proposed
a threshold of 25 000 km2 for Tir � 218 K for a 30-km
resolution images study. This selection can affect
strongly some of the statistical parameters, such as
MCS mean lifetime or MCS genesis location. In this
case, a scale analysis was performed to find out the
minimum size threshold for detecting and tracking con-
vective systems from successive images for a typical
time interval of Geostationary Operational Environ-
mental Satellite (GOES) images (30 min). An ellipse-
shaped MCS was considered in two successive images.
Machado et al. (1998) found that 45 km h�1 is a value
close to the upper limit of the displacement speed of the
center of mass for an MCS with no splits or mergers. So,
the distance between the same MCS in two successive
images should be less than 22.5 km. Based on this value,
the percentage of the superimposed area can be calcu-
lated for different MCS sizes and eccentricities (repre-
sented by ellipses, in this hypothetical case). Growth or
decay processes are not considered. Figure 1 illustrates
this situation. Each curve represents different eccen-
tricity types, where 1 is a perfect circle. For a given pair
of consecutive MCSs (whose size is known) and for a
given eccentricity and for a parallel orientation (worst
case), the superimposed area can be obtained from the
ordinate axis. Considering a conservative assumption of
a minimum overlapping area of 25% for two 30-min
consecutive images (Morel and Senesi 2002) and an
eccentricity value close to 0.5 [average value of this
parameter; Vila (2005)], a minimum value of 150 pixels

is obtained (considering the image resolution to be
4 km � 4 km, the minimum area will be 2400 km2) as a
minimum size threshold for tracking a given MCS. In
previous works, like Morel and Senesi (2002), a size
threshold of 1000 km2 for Meteosat (around 70 pixels
for GOES resolution) is established to track MCSs; so
our selection appears to be a conservative assumption
for describing the life cycle of a given MCS.

b. The tracking technique

By defining contiguous pixels that fulfill the mini-
mum size and temperature thresholds defined in the
previous section, regions that fulfill the brightness tem-
perature threshold (MCS identification) and the mini-
mum size requirements in a given image are identified.

Each of these cloud clusters (or pixel clusters) is
identified with a number that will allow the generation
of statistical information about each MCS (or cloud
cluster) and its identification during the life cycle.

Some radiative parameters (based on the cloud-top
temperature) are performed for each MCS detected in
the previous process. These parameters (Table 1) are
described extensively in Machado et al. (1998) and Vila
and Machado (2004).

The tracking methodology is based on the tracking
algorithm presented in Mathon and Laurent (2001).
Tracking of convective clouds is based on an area over-
lap method. This technique simply assumes that a cloud
at a later time corresponds to that at an earlier time
when, considering the previous constraints of size and
temperature, there are common pixels in consecutive
images.

The comparison of successive satellite images is car-
ried out “forward” and “backward” in time (Williams
and Houze 1987; Mathon and Laurent 2001), so there

FIG. 1. Percentage of the superimposed area between two el-
lipses with different eccentricities as a function of the ellipse size.
Eccentricities equal to 1 represent a perfect circle.

TABLE 1. Radiative parameters estimated by the ForTraCC
algorithm.

Basic data

Date and time (UTC)
Size of MCS
Temperature threshold of

MCS definition (235 K)

Location data (*) Radiative parameters (K)

Location of geometric MCS
center of mass

MCS mean brightness
temperature

Extreme location of MCS MCS minimum brightness
temperature

Minimum temperature
location

Nine-pixel kernel minimum
brightness temperature

* Lat and lon.
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are five types of possible situations that can be obtained
using this algorithm.

1) SPONTANEOUS GENERATION (N)

In a comparison of two successive frames, there is no
overlap between the first frame (no MCS present) and
the second one (an MCS is present); this situation is
considered to be a spontaneous generation and the be-
ginning of a new MCS life cycle.

2) NATURAL DISSIPATION (NOR)

Similar to the previous case, there is no overlap be-
tween the first frame (MCS is present) and the second
one (MCS is not present); this situation is considered to
be a natural dissipation of an MCS life cycle.

3) CONTINUITY (C)

In a comparison of two successive frames (both for-
ward and backward), there is an overlap of only one
pair of MCSs. (Fig. 2a).

4) SPLIT (S)

An example of this case is shown in Fig. 2b. This
situation occurs when a forward comparison in time is
performed. The first MCS (first time step) overlaps
with more than one MCS in the second time step. In
this case, a split occurs and the larger overlapping sur-
face between the first MCS and the MCS found in the
second step determines which MCS is chosen to con-

tinue the MCS life cycle, while the other one represents
the initiation of a new MCS cycle (initiation by split).

5) MERGER (M)

Similar to the previous case, except here a backward
comparison is performed. There is a match between
more than one MCS in the first time step and only one
in the second frame. In this case, a merging situation is
present (Fig. 2c). The larger overlapping surface deter-
mines which MCS is chosen to continue the MCS life
cycle, while the others (in case there is more than one
MCS present) represent a dissipation of the life cycles
of those MCSs (dissipation by merging).

c. The forecast technique

The methodology used to forecast the MCS trajec-
tory (displacement of the geometrical center of mass)
and the life cycle phase and area (growth–decay) of a
given MCS is presented in this section.

1) MCS CENTER OF MASS DISPLACEMENT

ESTIMATION

Starting from the identification and tracking of a
given MCS in three consecutive times—t � 2�t, t � �t,
and t—along a life cycle, the estimated MCS displace-
ment is performed by applying the following procedure.
The estimated displacement vector in the previous time
interval, V(t � 1), is performed considering the dis-
placement of the geometrical center of mass between
t � 2�t and t � �t. Considering that this displacement
does not change very much (in magnitude or direction)
at such a time scale (30 min), a predicted velocity VP(t)
is generated. Simultaneously, the real MCS displace-
ment, V(t), is also calculated considering the t � �t and
t time intervals. The estimation of the MCS vector dis-
placement VE(t � 1) is performed as V(t) plus the
difference between the real displacement and the pre-
dicted velocity [�V(t) � V(t) � VP(t)] in the last time
step. This procedure, which conserves the MCS’s shape
and size, is presented in Fig. 3.

If two successive time steps for the same MCS are not
available, the MCS vector displacement is estimated as
the displacement of the center of mass between t � �t
and t.

This procedure is applicable only if the continuity
condition (C) is fulfilled, because splitting and merging
of an MCS introduces a nonrealistic MCS center of
mass displacement. In these cases, as well as in the case
of spontaneous generation (N), the displacement is per-
formed as a distance-weighted average displacement of
the neighboring MCS.

FIG. 2. Schematic representation of the tracking situations.
White dotted figures represent MCSs in the first time step while
gray figures represent the second time step. Arrows represent
MCS evolution. Gray lines represent the previous time step evo-
lution, and solid lines represent the actual evolution for (a) con-
tinuity, (b) splitting, and (c) mergers.

236 W E A T H E R A N D F O R E C A S T I N G VOLUME 23



2) MCS LIFE CYCLE PHASE (GROWTH–DECAY)

The life cycle phase of a given MCS (growth–decay)
is evaluated through the normalized area expansion.
This parameter is expressed as �E � 1/A(�A/�t) (see
Machado et al. 1998; Machado and Laurent 2004),
where A is the area of a given MCS at a given time
(Tir � 235 K). Positive values indicate an expansion
process (growth) and negative values indicate that the
is MCS decreasing in size.

To determine the life cycle phase of a given MCS
(growth or decay), a statistical study of the �E param-
eter during the life cycle of all MCSs generated dur-
ing the Wet Season Atmospheric Mesoscale Cam-
paign (WETAMC) of the Large-Scale Biosphere–
Atmosphere Experiment (LBA) (Silva Dias et al. 2002)
was performed.

Only spontaneously generated life cycles with no
merging or splitting during the life cycle and with nor-
mal dissipation were used to obtain mean �E values for
different life time cycles.

The objective of this section is to determine the sta-
tistical parameters of a general model that will repre-
sent the MCS life cycle to be used in the forecast pro-
cess. The basic idea is expressed in Machado and Lau-
rent (2004). An MCS life cycle can be estimated using
the following equation:

A	t
 � �eat2�bt�c, 	1


where A(t) is the MCS area at the time t of the life cycle
and a, b, and c are parameters to be defined according
to the life cycle’s duration.

Based on Eq. (1), �E are typically straight lines:

�E � 1�A	�A��t
 � at � b, 	2


where a (slope) and b (interception) depend on the
MCS’s total life cycle duration. A statistical study fo-
cusing on the assessment of these two coefficients ac-
cording to the life cycle duration of a typical MCS was
conducted.

Based on the MCS statistics obtained from the
WETAMAC experiment, four life cycle duration
classes were used: families with life cycles with a dura-
tion of less than 2 h, those lasting between 2 and 4.4 h,
between 4.4 and 8.4 h, and those lasting longer than 8.4 h.
The selection of nonuniform categories is related to the
fact that, for statistical purposes, the numbers of cases
of each category should be similar. In this study [and
other related results for other regions of the world; i.e.,
Mathon and Laurent (2001); Morel and Senesi (2002)],
short-lived MCSs are more frequent than long-lived
MCSs, while most long-lived MCS have larger prob-
abilities of having splits and mergers during their life
cycles and are consequently excluded from this statis-
tical analysis.

FIG. 3. Schematic representation of the displacement forecast for the MCS’s center of mass.
The vertical dotted lines separate the different time steps. The dashed MCS indicates the
forecasted position of the cloud system.
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For each one of these four groups, three mean values
of �E was evaluated: (a) the mean value of �E in the
first instant of life of each MCS (initiation), (b) the
mean value of �E in the middle of the MCS life time
(maturation), and (c) the mean value of �E in the in-
stant of the MCS end (dissipation). These points are
plotted in Fig. 4 and connected with lines. These points
can be fitted with a linear equation (r � 0.90 in all
cases), so slope and intercept can be obtained through
a linear regression analysis for each life cycle duration
class.

In the general case, as each class can be fitted
through a linear equation, it is possible to obtain, using
an interpolation process, a family of curves in T–�E
space that represents the evolution of all possible MCSs
(from initiation to dissipation). Using this model, each
point in that space (Ti, �Ei) is related with an unique
curve that represents the life cycle evolution of a par-
ticular MCS at a particular moment during a lifetime
(Ti � time elapsed from initiation to current time).

This MCS life cycle model (family of curves) is used
to determine the probable evolution of each MCS in
the following way. Consider that an MCS is being
tracked along its life cycle and the last available infor-
mation about its size is known at time t1. The elapsed
time from the spontaneous generation (t0) to the last
available image is T1 � t1 � t0. At the same time, �E1

can be computed for the last two consecutive images.
Using the above-mentioned approach, a unique linear
equation is selected from the family of curves that
represents the possible evolution of all MCSs. The
slope and interception (aest and best) represent the
life cycle evolution of that particular MCS and it is
used for the size forecast. This is obtained by applying
these coefficients to the next time step in Eq. (2)
(�E � aestt1�1 � best). If t1 � 30 min, the initial expan-
sion is used to estimate the size evolution for that MCS
as suggested in Machado and Laurent (2004). In this
process, the size of the MCS can be modified but the

shape remains unchanged (only affected by scale fac-
tors).

A similar statistical analysis is applied to estimate the
MCS’s brightness temperature evolution. We have hy-
pothesized that the size evolution is linearly followed
by a cloud-top variation (�T � �Tmin/�t). A linear re-
lationship is performed between �E and �T, which is
also applied to the forecast procedure in order to obtain
the evolution of the minimum temperature.

This forecast technique can be performed only if
continuity is observed for a given MCS. Spurious
values of the �E result from splitting or merging are
not considered, and, in this case, the previous time
step values (aest and best) are used for the forecast pro-
cess.

3. Validation of the nowcasting methodology

The forecast process is carried out by considering
three parameters: the MCS displacement estimation, as
a function of the displacement evolution at the previous
time; the MCS area evolution based on the linear re-
gression shown in Fig. 4; and the MCS minimum bright-
ness temperature temporal rate.

The validation process is performed using two meth-
odologies: the first one is based on the MCS size evo-
lution and the position of each MCS. This technique is
applied only in cases of continuity (no merge, no split).
The second one is based on contingency tables and sta-
tistical parameters for the whole image. Because many
life cycles have mergers and splits, this validation pro-
cedure takes into account all of the cases.

a. Validation data and methodology

This nowcasting tool was applied to evaluate the dis-
placement and MCS life cycle over the Del Plata basin
in South America (Fig. 5) for up to 120 min with 30-min
time intervals during December 2002–January 2003.

FIG. 4. Mean value of �E (�106 s�1) at initiation, maturation,
and dissipation of an MCS for different life durations: 0–2, 2–2.4,
4.4–8.4, and more than 8.4 h.

FIG. 5. The Del Plata basin region.
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Figure 6 shows an example of the FORTRACC out-
put. An image subset covering the northeastern region
of the Del Plata basin at 2215 UTC 24 December 2002
(Fig. 6a) is presented. A color table was used to show
pixels with brightness temperatures below 235 K. Small
MCSs (below 150 pixels) and pixels warmer than 235 K,
which are not considered in the ForTraCC procedures,
were excluded to facilitate the visualization of the re-
gion of interest. The other three panels show the results
of the forecast at the same time, for different time leads
(30, 90, and 120 min). For 30-min forecast lead time
(Fig. 6, top right), the predicted image at 2215 UTC 24
December 2002 was computed from the initial image
observed at 2145 UTC of the same day, and so on for
the other forecast lead times.

The presence of a large MCS with three very well
defined cold tops and a smaller group of convective
systems located to the northeast of the large MCS (Fig.
6) is well represented by the predicted images. It is clear
that the forecasting technique can resolve the main
characteristics of the observed image (such as position
and size), especially until 90 min. In the last image
whose forecast range is 120 min, larger disparities are
observed among the position, size, and intensity be-
tween the observed and predicted MCSs although the
main cloud cluster has a similar structure.

b. MCS size and temperature evolution

This verification process is carried out by comparing
the evolution of the main forecast parameters for each
MCS with the observed ones. Only MCSs with no
splits–mergers during the forecast time were taken into
account in this verification process.

Figure 7 shows the size and minimum temperature
evolution for a single MCS present at 0345 UTC 6 Janu-
ary 2005. Solid lines represent the observed values for
both parameters while dotted lines represent the fore-

FIG. 6. Cold cloud cover at 2245 UTC 24 Dec 2002 for a subset of the Del Plata basin in
southeastern Brazil. (a) The observed image, (b) the 30-min forecast image, (c) the 90-min
forecast image, and (d) the 120-min forecast image.

FIG. 7. Size (black lines) and minimum temperature (gray lines)
evolutions for a single MCS at 0345 UTC 6 Jan 2005. Solid lines
represent the observed values for both variables while dotted lines
represent the forecast obtained with ForTraCC.
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cast obtained with ForTraCC for different time leads.
In this case, the selected MCS (located over the Atlan-
tic Ocean) is entering the dissipation phase (the MCS
size is decreasing and the minimum brightness tempera-
ture is increasing; solid lines in Fig. 7) and the forecast
tends to underestimate this process.

The comparison between the observed and fore-
casted parameters, shown in the previous example for a
single MCS, was applied to all MCSs for the period
between 5 and 11 January 2003.

Figure 8 shows the scatter diagram of the observed
and forecasted size and minimum brightness tempera-
ture for 30-min forecasts in both cases; good agreement
between the observed and forecasted values is ob-
served. The minimum temperature shows a larger dis-

persion for the size, but both parameters exhibit a large
correlation coefficient (r � 0.9) and the slope of the
first-order regression is close to 1 (observation � fore-
cast). The size and eccentricity evolutions (not shown)
exhibit a similar behavior. Obviously, a decrease in the
forecast skill is observed for the 120-min forecasts. The
model tends to dissipate the MCS too quickly (and
warmer minimum temperatures are achieved). This
process can be observed in Fig. 9. In this case, the slope
of the first-order regression is lower than 1 and the
correlation coefficient is lower than in the previous case
(larger dispersion). The reduction in the number of
cases for the 120-min forecast range is due to the con-
tinuity restriction applied and the smaller numbers of
MCSs having life cycles up to 120 min.

FIG. 8. (top) The observed and forecasted MCS sizes during the validation period for a
30-min forecast. (bottom) As in (top) but for the minimum temperature.
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The size and minimum temperature forecast is also
compared with a conservative assumption: where the
MCS maintain its size and position unchanged through-
out the time. This case will be called, hereafter, the
nonforecast. Since there are no other objective or sub-
jective methodologies over South America to compare
with, this test was applied to verify if this assumption is
better (or not) than the ForTrACC technique mainly
when the lag time increases and the forecast quality
decreases. Table 2 illustrates this situation: in all lead
times the size mean bias (�Size, expressed in %) and
the minimum temperature bias (�Tmin) exhibit better
results for the forecast model than for the nonforecast
situation. It also can be show, as in the previous analy-
sis, that there is a lack of quality for longer lead times.

Another validation test was performed for analyzing
the displacement of the MCS center of mass. This test

was carried out by taking into account the distance
(km) between the observed and forecast centers of
mass. These results are shown in Fig. 10. The histo-
grams describe the relative frequencies of the distance
classes. In the first case (30-min forecast), the mean
distance between the observed and forecasted mass
center is around 21 km (around 5 pixels), while in the
second case (120 min) this value reaches 81 km (around
20 pixels). Note that the forecast methodology does not
take into account the deformation of the MCS during
its life cycle.

c. Contingency tables and categorical statistics

Because MCS life cycles with frequent splits and
mergers are very hard to validate, a complementary
validation methodology based on contingency tables
was also performed to measure the ForTraCC skill. In

FIG. 9. Same as in Fig. 8 but for 120-min forecast.
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this case, the contingency table is performed for the
whole image and it is not possible to know how the
forecast works for a particular MCS. This methodology
shows the frequency of “yes” and “no” forecasts and
occurrences (pixels below 235 K, in this case). The four
combinations of forecasts (yes or no) and observations
(yes or no) are defined as follows:

(a) Hit : The brightness temperature of the forecasted
and observed pixel is below 235 K.

(b) Correct negative: The brightness temperature of the
forecasted and observed pixel is above 235 K.

(c) Miss: The brightness temperature of the forecasted
pixel is above 235 K but the observed temperature
of that pixel is below 235 K.

(d) False alarm: The brightness temperature of the
forecasted pixel is below 235 K but the observed
temperature is above 235 K.

A large variety of statistical indexes were computed
from the contingency table to describe particular as-
pects of forecast performance like accuracy (ACU),
bias score (BIAS), probability of detection (POD), and
false alarms rate (FAR). For the definitions of these
terms, please refer to, for example, Wilks (1995).

ACU is the fraction of the correctly forecasted pixels
compared with the total number of pixels in a given
image. The more accurate forecast corresponds to
ACU � 1 and this parameter can be misleading since it
is heavily influenced by the most common category
(correct negative).

The BIAS score measures the error between the
number of pixels predicted as MCS (Tir � 235 K) and
the number of pixels observed as MCS (Tir � 235 K). In
this case no bias corresponds to a value equal to 1. This
index determines if the forecast methodology tends to
overestimate (BIAS � 1) or underestimate (BIAS � 1)
the number of pixels with Tir � 235 K. Nevertheless, it
does not determine how well the pixels are adjusted for
in space, since this index only computes a relative fre-
quency.

To avoid the inclusion of correct negative reinforce-
ments, POD and FAR were included in the study. The
POD allows for us knowing the fraction of the observed
pixels that has been correctly predicted. This value is
not sensitive to the number of false alarms (a pixel with
Tir � 235 K is predicted but it is not observed), so it is
used in conjunction with the FAR. In this case, this
index indicates the ratio of false alarms with regard to
the number of well-predicted pixels (Tir � 235 K).

Figures 11a and 11c show an example of the time
evolution of the number of MCS pixels observed and
predicted (Tir � 235 K) for the entire image for 30- and
120-min forecast lead times for the period 6–11 January
2003. It can be observed that, in both cases, the diurnal
cycle is correctly predicted. The mean amount of ob-
served pixels with Tir � 235 K is around 5% higher than
the mean value of the predicted ones for the same pe-

FIG. 10. Relative frequency of distance classes between ob-
served and forecasted mass centers: (top) 30- and (bottom) 120-
min forecasts.

TABLE 2. Mean bias (�) of the size (expressed in % to show the relative variations in size) and minimum temperature for the
forecast and nonforecast situations. Each row represents different lead times (min).

Time (min)

Forecast Nonforecast

�size (%) �Tmed (K) �Tmin (K) �size (%) �Tmed (K) �Tmin (K)

30 �1.87% 0.25 0.35 �3.17% 0.34 0.46
60 �4.20% 0.59 0.66 �8.24% 0.50 0.62
90 �7.80% 0.75 0.52 �23.50% 0.79 0.93

120 1.81% 0.75 �0.35 �28.80% 1.00 0.88
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riod. For the period between 25 and 30 December 2002
(not shown), the behavior is similar. The large-scale
environment and the convective activity are very im-
portant factors in determining these values. Neverthe-
less, in both cases, a small underestimate in the number
of predicted pixels (on average) is observed. This fact
can be observed in the temporal series of BIAS (Figs.
11b and 11d), where values below 1 are more frequent
that larger ones. A less favorable situation is obtained
for 120-min forecast lead time (Figs. 11c and 11d),
where the larger underestimations are present. This re-
sult suggests that the proposed model tends to dissipate
MCSs more quickly than observed systems. This result
can be explained by the fact that the proposed model of
MCS evolution predicts only an initiation, a matu-
ration, and a dissipation phase. In the real world,
the behavior of MCSs is more complex with fre-
quent regenerations, splits, mergers, and spontane-

ous generation of new convective systems that are
not considered in the proposed model. Nevertheless,
the forecast reflects the same diurnal cycle structure of
the convection and a quite good performance for up
90 min.

Table 3 shows the statistical indexes for 30, 60, 90,
and 120 min. The accuracy index (ACU) shows larger
values for the 30-min forecast lead time. The mean
value surpasses 0.98. In other words, 98% of the pixels
have been correctly predicted. However, this value is
high because most of the values correspond to correct
negative pixels (Tir � 235 K). The POD, for a 30-min
forecast, reaches approximately 0.77 and the FAR is
around 0.20. In other words, while 77% of the observed
pixels corresponding to Tir � 235 K were correctly pre-
dicted, 20% of the predicted pixels were not observed.
On the right side of Table 2 (120-min forecast), the
ACU index is about 0.96 for both periods of analysis

FIG. 11. (a) Number of observed and forecasted MCS pixels per image during the period 6–11 Jan 2003 for the 30-min forecast range.
(b) BIAS score per image for the same period for the 30-min forecast range. (c) As in (a) but for the 120-min forecast range. (d) As
in (b) but for the 120-min forecast range. Blanks in the solid line correspond to missing data (the GOES-8 southern scan was not
available).
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(December and January) and although around 96% of
the pixels have been correctly predicted (also consid-
ering the correct negative), POD and the FAR appear
to be slightly too far from the ideal case.

This analysis complements the previous one showing
similar results independently of the applied methodol-
ogy.

4. Summary and conclusions

The ForTraCC technique for detection, tracking, and
short-term forecasting of MCSs using satellite images
has been presented. This technique, which is com-
pletely automated, is composed of four independent
modules: (a) cloud detection defined by a size and tem-
perature threshold, (b) observation of MCS physical
characteristics based on cold cloud tops, (c) a tracking
algorithm based on overlapping images, and (d) MCS
evolution forecasts.

The physical basis of the forecasting algorithm is
based on the fact that the MCS area’s evolution (and its
minimum temperature) follows a typical pattern of be-
havior, which only depends on the total life cycle of that
MCS. The propagation is based in the MCS’s move-
ment in the last 30 min, corrected by former errors in
previous time steps.

The size evolution model is based on the work in
Machado and Laurent (2004) using MCS life cycle sta-
tistics from the Wet-Season Atmospheric Mesoscale
Campaign (WETAMC) of the Large-Scale Biosphere–
Atmosphere Experiment (LBA).

A statistical verification was carried out by compar-
ing real images and forecasted images. The main results
are summarized by the following points:

(a) Considering the forecasted and observed pixels
with brightness temperatures below 235 K (inde-
pendently of their positions), it is observed that the
model tends to underestimate the number of pixels;
this underestimation, on average, increase with
longer forecast lead times.

(b) The proposed methodology follows the diurnal
cycle of cold cloud cover (Tir � 235K) cloud cov-
erage with acceptable accuracy in amplitude and
phase.

(c) The mean accuracy (ACU) obtained with this tech-
nique is about 95%. This high value is mainly due to
the correct prediction of no MCS occurrence. In the
case of POD and FAR (which do not include this
case), a gradual lost of quality is observed. POD
decreases and FAR increases with forecast range.

(d) The behavior of individual MCSs shows good
agreement between the observations and forecasts
of size and minimum temperature for a 30-min
forecast range, with a lose of quality for longer
forecast range.

The information generated by ForTraCC is very use-
ful for different stakeholders, such as energy distribu-
tors and emergency management agencies, among oth-
ers. Updated information about MCS evolution over
South America can be obtained online (http://
satelite.cptec.inpe.br). This service has been working
operationally since 2004.

This methodology is a first approach to this problem,
since the families selected for the statistical study have
some bias (no splitting and/or no merging during the
entire life cycle). Nevertheless, the results obtained in
this study are quite reasonable and they encourage us
to continue with this approach in trying to find region-
alized relationships to improve our nowcasting and also
for studying the cases of more complex MCS behavior
(regenerations, external forcing, etc.) In the future,
this methodology should be combined with a mesoscale
numerical model to include new MCS developments
and to take into account the merging, splitting, and
regeneration processes in the evolution of MCS life
cycles.
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